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Abstract

In virtually all engineering and science disciplines it is mnecessary to
determine average or effective properties. Certain rock properties, in particular
permeability, do not average linearly i.e., the permeability of a block is not an
arithmetic average of the component permeabilities. The averaging process is
more complex and will depend on the spatial arrangement of the component

permeabilities.

The absolute permeability in the most common reservoir rock, a
sandstone/shale sequence, is affected most by the presence of the low
permeability shales. The estimation of block effective permeability in this

composite sandstone/shale reservoir rock is the topic of this thesis.

The sensitivity of reservoir forecasting to the averaging of absolute
permeability has been studied using data from the Prudhoe Bay reservoir. As a
result of this case study the most critical step in averaging was determined to be
the averaging of the contrasting sandstone and shale permeabilities. The block
effective absolute permeability has been modeled as a power average of the
sandstone and shale permeabilities. The spatial arrangement of the shales will
determine the averaging power that correctly identifies the block effectjve

permeability.

Some statistical measures, that are available from obtainable data, are
introduced to characterize the spatial arrangement of the shale heterogeneities.
The averaging power can then be more accurately estimated knowing these
statistics of the sandstone/shale sequence. The results were established on the
basis of repeated network flow simulations. The power averaging approach
makes the estimation of block effective absolute permeability in sandstone/shale

sequences more manageable.
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Chapter 1

Introduction

Overview

Almost everyone will have seen different sedimentary rock formations along
roadways. Rarely are the sandstone and shale structures uniform for hundreds or
thousands of feet. This, however, is the scale at which reservoir engineers require
rock property information. If the rock properties for the large scale rock units do
not accurately describe the important smaller scale heterogeneities of the
reservoir, the behavior predicted by flow simulation programs may be inaccurate.
Since production practices and revenue projection are based on reservoir

simulation it is important to characterize the reservoir accurately.

The most common reservoirs are sandstone reservoirs with some shale
present. In an oil reservoir most of the rock property information is available at
the scale of a core plug and the scale that is observed by well logs. This
information must be averaged into effective large scale information. The
averaging of permeability from one scale to another is a process that is not yet
completely understood. The essentially impermeable shales will affect the
permeability of large rock units differently depending on how they are distributed
in space. If the shales are aligned in the direction of flow the impact will be
minimized. The other extreme is when the shales are aligned opposing flow which

will maximize the impact of the shales.

This thesis considers the problem of scale averaging of absolute permeability.

Some statistical measures will be introduced to describe the spatial arrangement



of shale and sandstone. These measures can then be used to predict averaging

processes to compute effective permeability.

Throughout this research the practical relevance of the approaches taken
and the solutions proposed have been critically assessed. The following questions

have been considered in detail:

o  What practical impact will incorrect averaging processes have on reservoir

production forecasting?

o How can block effective absolute permeability be estimated from -core
measured permeability and statistical parameters about the proportion and

spatial arrangement of the rock components?

To address these problems simplifying assumptions must be made. A binary
permeability distribution for the core data will be considered to represent the
sandstone/shale sequence. This is a valid assumption if there is very little mixing
of the two components at the scale of measurement. It is also necessary to
assume that some information is available about the spatial distribution of the
shales. Indeed, if there is no information outside of the well region then nothing
can be said about oil saturation, porosity, and other crucial reservoir parameters.
Throughout the thesis the assumptions made are noted and their practical

implications are discussed.

Published research related to the problems addressed in this thesis is
documented in the next section. The topic of each subsequent chapter is as

follows:

o Chapter 2 contains a more detailed description of the problem and a

summary of the concepts of permeability and geostatistics.

e Chapter 3 presents the results of a sensitivity study. The sensitivity of

predicted reservoir performance to different averaging techniques for



absolute permeability was investigated using data from the Prudhoe Bay

reservoir.

Chapter 4 addresses the problem of determining the appropriate distribution

of permeability in a two component sandstone/shale mixture.

Chapter 5 shows how spatial statistics characterizing the sandstone/shale

sequence may be used to estimate effective absolute permeability.

Chapter 6 summarizes the results of the thesis and shows where future

research may be conducted.



Related Research

The calculation of effective flow properties in heterogeneous media is a topic
that is receiving a great deal of attention [Freeze, 1975; Gelhar, 1976; Gelhar and
Axness, 1983; Haldorsen and Lake, 1984; Haldorsen 1983; Begg and King, 1985].
This problem is important for petroleum engineers who must plan recovery
schemes and predict reservoir performance. In the field of hydrology the problem
of predicting recharge and discharge rates for aquifers requires calculation of
effective flow properties. When considering the underground disposal of
hazardous wastes it is necessary to know the rate at which the fluids may move

through the rock.

This review section is not intended to be comprehensive but is rather an
overview that will highlight important and relevant published research. The
author has no access to internal reports or technology developed ”in-house” by

major oil companies therefore this review will be limited to published research.

A comprehensive discussion of the techniques available to average
permeability can be found in the Ph.D. dissertation by A.J. Desbarats (Stochastic
modeling of flow in sand - shale sequences, Stanford University, 1986) Most of the
research devoted to estimation of effective permeability has considered relatively
homogeneous materials. An initial assumption that the distribution of
permeability is lognormal is usually made, although, the very nature of a
heterogeneous medium does not suggest a lognormal distribution for permeability
(Fogg,1986). If the medium is truly heterogeneous, i.e. with sandstone and shale,
there should be two main modes in the permeability distribution. A continuous
unimodal distribution will only be observed for each of the components
independently, or if there has been substantial averaging within the volume of

measurement.

For a number of different unimodal permeability distributions Warren and

Price (1961) show that the geometric average may be used as an estimate of the



effective permeability when there is no spatial correlation. Other researchers
(Gutjahr et.al. 1978; Dagan 1979; Gelhar and Axness 1983) propose solutions for
spatially uncorrelated and continuous low variance permeability data
distributions. Another, more appropriate averaging technique for permeability in
presence of the distinctly bimodal and spatially correlated case of a sandstone

reservoir is proposed by Haldorsen and Lake (1984).

The method proposed by Haldorsen and Lake calls for the explicit generation
of shale bodies within a flow field by Monte Carlo simulation of their locations
and size. The horizontal and vertical effective permeability is then approximated
by a formula based on a stream - tube concept. Begg and King (1985) remove the
need for Monte Carlo simulation by incorporating statistics of shale size and
abundance into the analytical formulas for effective permeability. A.J. Desbarats
(1986) has shown that the model does not work well for volume fractions of shale
greater than 10%. The implicit assumption that the pressure field surrounding
each shale is not affected by other shales is valid only for low shale fractions; for

shale fractions greater than 10% this assumption breaks down.

Weber (1982) approaches the problem from a geological position. Knowing
the sedimentology and diagenesis background, models can be created that will
predict the possible influence of sedimentary structures on fluid flow. The
attention is focused on computing the permeability anisotropy rather than
volume averages of permeability. However, the geological basis of this research is

fundamental to any comprehensive treatment of the seale averaging problem.

Research relevant to the problem of scale averaging can also be found
outside of the earth sciences. Percolation theory which is discussed in physics
literature (Hammersley and Welsh, 1978) provides another approach to the
problem of scale averaging. However, there appears to be no easy way yet to

incorporate spatial correlation into percolation theory.



One of two directions is typically taken to solve the problem of estimating
effective permeability. A numerical approach (Warren and Price 1961; Freeze
1975; Smith and Freeze 1979; Desbarats 1986) based on numerical simulations,
and an analytical method based on a perturbation approach are the two common
approaches. Alternately, a more empirical approach similar to that of Haldorsen
and Lake (1984), Begg and King (1985) may be adopted. The research presented
here falls loosely into this third category.

In the practical case of estimating eflective permeability there are some
specific considerations that make many of the proposed earlier solutions not fully

satisfactory:

e The univariate distribution of the permeability in a sandstone/shale
reservoir is bi or multimodal at the scale of measurement and is not
continuous. The permeability distribution (if correctly sampled) for a
heterogeneous medium as commonly found in actual sandstone reservoirs is

most often the combination of two or more distributions.

» Perturbation approaches require that the permeability distribution have a
low variance. Variances of multimodal distributions are generally high. In
fact a binary distribution has the greatest variance of all possible

distributions with a given range.

o  Spatial correlation is present. This spatial correlation is introduced through
the process of sedimentation and is crucial to the problem: assuming a

spatially uncorrelated media is not a valid assumption for most reservoirs.

e  The shales interact with each other, thus for volume fractions of shale that
commonly exist in sand-shale reservoirs this interaction must be accounted

for.



Instead of an empirical estimation algorithm, the effective permeability may
be directly calculated by numerical means (Warren and Price, 1961, Desbarats
1986). This is a reasonable alternative but it is cumbersome to implement.
Implementation requires a network model for the sandstone /shale sequence of
each block. In many practical cases the only information available is core data,
well logs and possibly some geological inference about the spatial arrangement of
the sandstone and shale. These limitations may make it difficult to create an

appropriate numerical model.

A prediction algorithm that is initially calibrated on numerical results but
requiring input in the form of statistics (univariate and spatial) relevant to the
flow system would be more appropriate. The idea is to fit network simulation
results by a heuristic formula whose parameters are statistically linked to
geometric characteristics that can be inferred directly. Such techniques
performing well for different ranges of shale proportion and spatial distribution

are not currently available.

Ideally, the prediction algorithm should integrate all sources of information.
The geological input of Weber (1982), the shale simulation of Haldorsen (1983),
and various numerical techniques to calculate block permeability can all be used
to assist development of a new model. The research presented in this thesis will

draw from the results found in the works noted above.



Chapter 2

Problem Statement and Background Information

Problem Statement

The problem of calculating block effective absolute permeability on the basis
of small scale measurements is very general. If the reservoir were completely
homogeneous the calculation of block averages would not be a problem; the
permeability would be constant and uniform throughout the reservoir. However,
real reservoirs are not that simple and contain different types of heterogeneity
which affect the calculation of block averages. The dominant heterogeneity is
considered to be the presence of low permeability shales (Pryor and Fulton, 1976;
Fogg, 1985; and Haldorsen and Chang, 1985). Although some authors now
suspect that connected fractures may be the most important feature. The impact
of heterogeneity within the sandstone and within the shales is dwarfed by the

transition sand-shales and their spatial location. -

To begin the study of heterogeneity and scale averaging one may ask: how
much does reservoir heterogeneity affect simulation results and at what scale
heterogeneity is important? To partially answer this general question the
following specific problem has been addressed: How will reservoir simulation
results for a waterflooding production scheme be affected by the averaging of
absolute permeability, and perturbations in other multiphase rock property data?
The sensitivity of predictions to perturbations in the multiphase flow properties
(félétivé permeability, capillary pressure, etc) of the medium is important because

the fluid heterogeneity may be more important than the rock heterogeneity.



The impact of averaging absolute permeability on waterflooding performance
has been studied with the SCRF II heterogeneous reservoir model. When

considering this question answers to additional questions will become apparent:

o At what scale is the averaging procedure for absolute permeability

important?

o What parameters, that are required input to reservoir flow simulators,

impact most the simulation results?

This case study will allow work to be directed more closely toward where the
problems are. The second phase of this thesis considers the specific problem of
determining effective or averaged medium properties, in particular, the averaging
of absolute permeability. A binary permeability distribution is proposed and the
effective permeability of a block is modeled as the power average of the

component permeabilities.

The effective permeability will be related to statistical measures of the
spatial arrangement of shale heterogeneities. The goal is to develop statistical
parameters that characterize a heterogeneous system and that may be used to

predict effective absolute permeability.

One limitation is that any statistical parameter must be inferred in practical
circumstances. Therefore the estimation of such statistics from real data (core,
well logs, well testing, seismic, and geologic knowledge) must be realistically

possible.
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Flow Properties

Absolute Permeability:

The concept of absolute permeability is recalled. Permeability is a property
of a porous medium which characterizes how easily a fluid can be made to flow
through it. Permeability is defined by an empirical relationship known as Darcy’s

Law: ,

A

_ 14 :
K_A(éjj/L) o (2.1)

where:
K = permeability (md)
g = volumetric flow rate (¢m3/sec)
# = viscosity (cp)
A = cross sectional area (cm ?)
6P = difference in pressure across the sample (atm )

L = the length of the sample (c¢m )

The limitations of Darcy’s law are well documented in the literature (Collins
1961; Hubbert 1956; Whitaker 1966,1969; and Scheidegger 1974) and will not be

discussed here.

The permeability of a porous media is a macroscopic property and has
significance for samples sufficiently large with respect to the pore size. Also,
permeability is not an additive scalar like saturation. The permeability of a
sample may be directional and will depend on the directional size of the sample

or rock unit that is being considered.
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Relative Permeability:

If more than one fluid phase (ex. oil and water) is flowing through a porous
medium, the effective permeability of the rock to each phase is reduced. The sum
of the effective permeabilities for all flowing phases is found to be less than the
absolute permeability, The effective permeability of a fluid phase may be
expressed as the produc; of the relative permeability (dimensionless value
between 0 and 1) and the absolute _permeability of the rock. Relative
permeablhty is largely a function of the wetting phase saturation. Water is
usually the wetting phase in an oil-water system. Relative permeablhty is also a
function of saturation history as well as of saturation. For example: the relative
permeability of the oil phase in an oil-water system depends not only on the
water saturation but on whether the water is displacing the oil (drainage) or the
oil is displacing the water (imbibition).

A set of typical relative permeability curves and the associated terminology
are shown on figure 2.1. Relative permeability curves are determined in the
laboratory from core. Three phase relative permeability is rarely measured but is
usually constructed through two sets of two phase data. Relative permeability
curves vary for different rock characteristics, fluid properties, and flow regimes.

Among the parameters that affect the measurement of relative permeability:

1. Temperature. It is well documented throughout the literature that
temperature affects relative permeability. Recently Bennion, etal. (1985) has

shown that the effect of temperature can be significant.

2. Flow conditions. The flow conditions used to determine relative
permeability may be steady state or unsteady state. Experimental methods
to determine relative permeability characteristics have been developed for
both flow conditions. Since flow in a reservoir is suspected to be at unsteady
state the appropriate method to experimentally determine the relative

permeability would be for this flow condition. However, the solutions
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Figure 2.1: Relative Permeability as typical functions
of the water saturation. The curves are representative
of simultaneous flow of oil and water through a porous

media (after Dake 1979).
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obtained for this condition are not unique. Disregarding conceptual problems
with uniqueness and physical meaning there are newer techniques that
address this problem (Islam and Bentson, 1986). It is also apparent that this
problem has not been fully resolved and that the resulting relative

permeabilities are affected.

3. Measurement fluid Water-oil relative permeability measured using
reservoir fluids and fresh preserved cores differ considerably from those
routinely obtained using refined fluids and extracted cores (Mungan, 1972).
The eflect of the saturating fluid on the determination of relative
permeability is significant. It should be noted that using the native crude oil,

which would provide the most correct results, is not common practice.

Relative permeability is sensitive to many different parameters that are not
easily accounted for in laboratory conditions. The concept of relative
permeability seems flawed but as yet there is no alternative to this approach.
Some means must be used to quantify the observed phase behavior. Laboratory
measured relative permeability curves are usually altered to create pseudo-
relative permeability curves that match the performance history of the reservoir.
Ijﬁfortunately the relative permeability appears to be the most important
parameter for many performance forecasting tasks. Consequently the inherent
uncertainty in measuring such relative permeability may mask the influence of
other possibly more intrinsic rock properties, and may leave the impression that
scale averaging is not important. A practical assessment of the impact of relative

permeability heterogeneities on flow performance forecasting is documented in

the next chapter.
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Capillary Pressure:

Another important parameter describing multiphase flow is capillary
pressure. If there are two phases present in a porous media the pressure in each
phase tends to be different. This pressure difference is called the capillary
pressure. The fluid that preferentially ”"wets” (attracted to) the rock has a lower
pressure than the non-wetting fluid phase. The expression commonly written for

capillary pressure:
Pczpnw"‘Pw=f(Sw) (2'2)

where:
P, = Capillary pressure. L

P,, = Pressure in the non-wetting phase. '

P, = Pressure in the wetting phase. **

J (S, ) = The capillary pressure is a function of the wetting

phase saturation.

Capillary pressure is, in some respects, similar to relative permeability. The

properties of P, that make it similar to relative permeability are:

o Reliable measurement is difficult and the impact of various measurement

techniques is difficult to assess.

o The capillary pressure depends on the wetting phase saturation and the

saturation history.

The capillary pressure is, in most circumstances, not as important as the
relative permeability. In fact, the capillary pressure is sometimes set to zero as a
first approximation. The capillary pressure may be important especially in cases
of fractured reservoirs, however, the meaning of effective capillary pressure is not

clear let alone its averaging from one scale to another.
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Averaging and Effective Medium Properties

In virtually all engineering and science fields it is necessary to determine
average or effective properties. Often the average property of a heterogeneous
media is a linear average (i.e., an arithmetic or volumetric average). Certain
properties, in particular permeability, do not have the property of linear
- averaging.r The discussion here will be limited to properties such as permeability

where the averaging process is non-linear and unknown for practical cases.

When the averaging process is unknown the problem of averaging could be
avoided if measurements are taken at the scale at which they are going to be
used. As previously mentioned, the scale of a core plug is considerably different
from the scale of a reservoir simulation grid-block. For this reason some

averaging must be done.

In Petroleum Engineering one must often calculate an average permeability
over a large volume based on permeability measurements at several points within
the volume. Permeability is, in some respects, a fluid connectivity. It shares many
of the properties of electrical conductivity, one of which is its non-additive
averaging nature. The overall permeability of several small blocks, each of which
has a known permeability k; is not simply an arithmetic average of the
individual k;’ s. The average is dependent on the spatial arrangement of the

block permeabilities, £;.

This problem can be understood in one dimension where the analogy of
electrical resistivity is appropriate. In three dimensions the analogy requires a
network of resistors. If one considers the flow of fluid through several blocks in
series (ref. figure 2.2) the effective permeability of the composite is the harmonic

mean:

1
K

€

1'=r 1
_-’;i 1?.'_ (2'3)

Il

If the blocks are arranged in parallel (ref. figure 2.3) the effective permeability is
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Flow direction

Figure 2.2: Blocks in series - the effective permeabili-
ty is the harmonic average of the component per-
meabilities.

K,

K,

K,

K,

!

Flow direction

Figure 2.3: Blocks in parallel - the eflective permea-
bility is the arithmetic average of the component per-
meabilities.
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given by the arithmetic mean:

1 f=n
K, ==Yk (2.4)

nizi
In two or three dimensions the effective permeability is not given by any
simple analytical solution. The effective permeability is bounded by the
harmonic mean as a lower limit and the arithmetic mean as an upper limit. The
effective permeability of a 3-d network of blocks, each with a known permeability
k;, may take any value between the harmonic average and arithmetic average.
The lower bound harmonic mean (2.3) can be seen as a power average of the
elementary k;' s with power w = -1. Similarly, the upper bound arithmetic
mean (2.4) can be seen as a power average with power w = +1. Hence, and
heuristically, it can be said that the effective permeability is a power w average of
the elementary permeability values k;' s with a power value -1 < w < +1.
The problem of determining the effective permeability is now mapped into the
more congenial problem of determining an effective power which is a scalar

valued between +1 and -1.

The distribution of permeability must be split into n, modes or classes. At
the limit each permeability datum could represent a class. The power averaging

formula is written:

€ |

K, = [’E": pi'kiw] (2.5)

1 =1
where:
K, = effective permeability

p; = volume fraction of class ¢

1 The power averaging formulation requires that all the permeabilities (k; ) be strictly
greater than zero.
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k; = permeability of class 1

w = power of averaging

The geometric average is obtained with w = 0 (at the limit since the power

function is not defined at w = 0).

The power average provides a convenient formulation for the description of
an averaging process. Fractional power values will characterize different spatial
arrangements of the elementary k; values. When dealing with a two component
system(n, = 2), as done in this thesis, the power averaging formulation is shown
to be the correct functional form of the solution if certain axiomatic conditions
are met. Korvin (1982) outlined eight conditions or axioms that the physical
system should meet to unambiguously determine the effective property of a two
component system with a power average. The work presented in this thesis
makes use of the power averaging formulation and the conditions outlined by
Korvin will be recalled. The two component power average formula for effective
permeability is written:

1
K, = (p Ksh® + (1-p )-Kss“’) v (2.6)
with:
K, = Block Effective Permeability.
Ksh = Permeability of the shales (strictly > 0).
Kss = Permeability of the sandstone.
p = Proportion (volume fraction) of shale.

w == Power of averaging.
The eight conditions will now be given and interpreted in the context of a
permeability study.

1. Reflexivity: If the sandstone and shale have the same permeability, the
permeability of any composite sandstone and shale unit will have that same

permeability.
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2. Idempotency: The permeability of a 1009 shale unit is the permeability of
the shale and the permeability of a 100% sandstone unit is the permeability

of the sandstone.

3. Homogeneity (of the O-th order) with respect to the sandstone/shale volume
Jractions: The effective permeability does not depend on the size of the
composite but only on the volume fraction of each component. The
averaging power w will be made variable to account for the different spatial

arrangements of sandstone/shale for a given shale volume fraction.

4. Internity;, The eflective permeability of a composite lies between the

permeability of the sandstone and the permeability of the shale.

5.  Bi-symmelry: If the composite is composed of four components any pair of
components may be averaged and the resulting pair of averaged properties

may be averaged to obtain the composite effective permeability.

6. Monotonicity with respect to the volume fractions: As the proportion of shale
increases the permeability decreases (provided that the permeability of the

shale is less than that of the sandstone).

7. Monotonicity with respect to the permeabilities: For a given system (constant
shale permeability and proportion of shale) the effective permeability will

decrease for a decrease in sandstone permeability.

8. Homogeneity (of the first order) with respect to the permeabilities: If the
shale and sandstone permeabilities are scaled by a multiplicative constant
the effective permeability will be scaled by the same constant. The
implication is that the effective permeability will have the same units as the

component permeabilities.

The permeability of a composite mixture is not only a function of the
component permeabilities and the volume fraction of each component. The

effective permeability is also a function of the spatial arrangement of the
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components. This obvious fact leads to the conclusion that permeability can not
be unambiguously determined from the component permeabilities and volume
fractions. The idea of this thesis is precisely to make the averaging power a
function of some statistics of this spatial arrangement. This type of empirical

approach is not unusual in the earth sciences.

Formulae that make use of a power averaging approach include the Wryllie
“time-average equation” (Wyllie et al, 1956), Meese and Walther's ”vugular
carbonate formula” (Meese and Walther, 1967), (Tegland, 1970, Mateker, 1971)
for the sound speed and effective attenuation in an alternating sequence of sand
shale layers, and (Beck, 1976; Rzhevsky and Novik, 1971; Schon, 1971; Woodside
and Messner, 1961; Grant and West, 1965; Pearce, et al., 1973; etc.) for the

estimation of thermal and electric conductivity of fluid filled sedimentary rocks.

The power averaging formulation is not subject to any a priort hypothesis
that can be validated or refuted. It is simply a model allowing the problem of
determining Ke to be shifted to the problem of determining w. The problem is
more manageable due to the following properties (Journel, et.al., 1986, Deutsch,

1986):

1. For a bimodal sandstone/shale system the averaging power has been shown

to be reasonably independent of the proportion of shale (see next section).

2. It is more convenient to work with the power of averaging which is a scalar
known to be bounded between +1 and -1, than with a complex funection of

the permeability measurements.

3. On the basis of some prior geologic knowledge about the dimensionality and
spatial arrangement of heterogeneities it may be possible to narrow

considerably the range of possible averaging powers.

Figure 2.4 shows how the averaging power affects the resulting effective
permeability for a bimodal distribution of permeability (Ksh =0.1 md and

Kss =1000.0 md ). The traditional arithmetic, geometric, and harmonic averages
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Ke versus p - different powers of averaging
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Figure 2.4: Effective permeability for different
averaging powers.

A bimodal permeability distribution with Ksh = 0.1
md and Kss = 1000 md is used. The arithmetic,
geometric, and harmonic averages are shown for refer-
ence.
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are shown for reference. The continuous transition from the arithmetic mean to

the harmonic mean allows stable mapping of K, to w.

It should be noted that the process of power averaging is distributive, i.e.,
both of the following processes will yield the same average permeability for a

large block:
1. The small scale information is averaged directly to the large block scale.

9. The small scale data is averaged to an intermediate scale and subsequently

averaged to the large block scale.
In both cases the same averaging power must be used in each step.
Power averaging amounts to transform the data by a power w,

arithmetically average the transformed data, and then back transform (by L) to
' w

obtain the average.

To summarize the current knowledge on effective medium properties is easy
because there is no analytical solution to calculate the effective absolute
permeability in a two component mixture. Methods that are used in different
situations are refered to in chapter one. A power averaging formulation is

adopted in this thesis because it makes the problem more tractable.



Power Averaging for Block Effective Permeability

Rather than trying to analytically derive the averaging process, it is
observed through repeated flow simulations performed on realizations of
permeability fields. This forward modeling, common to petroleum engineering
practice, allows consideration of any permeability field, not restricted by such

hypothesis as continuity or small variance.

Before getting into more sophisticated recovery processes with multiphase
flow, a single phase, steady state, flow equation solved by finite difference
methods at each grid block will be considered. Because of hardware limitations,
the system was limited to a maximum of 500 grid blocks. Constant pressure
boundaries were imposed in the direction of flow, and no-flow boundaries were
specified in the other two directions perpendicular to flow. The effective
permeability I, of the network is obtained by dividing the total volumetric flux
across a section perpendicular to flow by the imposed pressure gradient. The flow
simulation was repeated for each realization of the grid block permeability field,
yielding each time an effective K,. The relationship between I, and the

characteristics of the input (grid block) permeability field are observed.
The input permeability field:

Experience and previous simulation works in shaley reservoirs have shown
that the recovery, hence the flow conditions do not depend on the fine details of
the permeability spatial distribution, but rather on the spatial connectivity of the
extreme permeability values, either low such as impervious shale barriers, or high

such as open fractures. ref. Haldorsen and Chang (1985).

In other words, and in first approximation for recovery purposes in single
phase steady state flow conditions, the permeability field can be approximated by
its two extreme modes, K, for the essentially impermeable phase and K, for
the much coarser grained rock. Thus, the permeability distribution considered

hereafter is binary and characterized by the 3 parameters:



Ky << K, (2.7)

0 < p < 1:volumetric proportion of shales

However these two modes are not distributed at random in space. Rather

their spatial distribution obeys the following bivariate distribution:

Prob {z in shale, z +h in shale} = S(h) (2.

5
oo
N’

S (h) being a function of the three dimensional interdistance vector & .

The function S(h) fully characterizes the bivariate spatial distribution of

the binary permeability field, in particular:
Prob {z insand, z+h insand} =1-2p + S(h) (2.9)
Prob {z in shale, z+h insand} =p - S(h)

The random function permeability K (z) is stationary with moments:
E{K(z)}=1p Ky + (1-p) K
Var {K (z)} = [Kss _K,, }2 p(1-p)

The correlation between K (z ) and KX (z +1 ) is:

o) = S

Several techniques exist to generate realizations of a binary random field

(2.10)

with a given univariate and bivariate spatial distribution (equations 2.7 and 2.8).
The technique used here is that of indicator simulation, described in Journel and
Isaaks (1984), whereby an appropriate threshold is applied on an appropriate
Gaussian field generating two spatially correlated phases called sand (above

threshold) and shale (below threshold).

The study consists in varying the input statistics: p, S(h), and the contrast

K, /K, , and observing the resulting network effective permeabilities K, .



A dispersion of shale and sandstone permeability values can easily be
generated around their mode values K,; and K,,, thus generating a continuous
bimodal distribution. However, the binary distribution allows studying the
impact of the sole transition sandstone/shale, high/low, independently of other

and minor sources of variability.

This binary model, although still limited and provisional, goes a long way
beyond the limitations of previously used stochastic models, such as small
contrasts and no spatial correlation. In the present study contrasts K /K, up
to 10%° and correlation ranges from nought to several times the network

dimensions were considered.
Some Results:

In the following, an exponential model with a vertical to horizontal

anisotropy 1/15 has been considered for the correlation function p(h):

a

p(h) = exp [—311, J (2.11)

with:

B =2+ b2+ 15k, )
hys hy, h, being the three rectangular coordinates of the vector h.
Thus, the practical range, i.e., the distance beyond which spatial correlation

vanishes is @ in the horizontal plane, and a /15 in the vertical direction.

Figure 2.5 gives the results for horizontal flow in the z-direction in a
network of dimensions (L, L,, L,) such that: L, /a = 1.7, L,/a =08,
L,/a =3, i.e., of dimensions 1.7, 0.8, and 3 times the respective correlation
ranges. The network is discretized into n, =12, n, = 6, n, = 6, i.e., a total of
432 grid blocks. Each grid block was assigned a permeability (diagonal isotropic
tensor) equal to K,, = 102%md or Ky, = 10*md; the contrast is thus

¢c =K, /K, = 105.
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EFFECTIVE PERMEABILITY VS SHALE PROPBRTIBN (HBRZ)
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Figure 2.5: The eflective permeability versus shale
proportion for horizontal flow. Note that for shale
fractions less than 0.6 the power average (w = 0.57)
fits the simulated data very well. The traditional ar-
ithmetic, geometric, and harmonic averages are shown
for reference.
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This figure graphs the network effective permeability ( in the X -direction)
vs. the proportion p of shales. Since the generation of the permeability field is
stochastic in nature, an average of 30 to 50 realizations (with each 432
permeability values) were retained for each preassigned shale proportion p; the
flow simulation was run for each such realization to derive the corresponding
effective permeability K, ; finally, it is the arithmetic average of these 30 to 50

realizations of I{, which is plotted vs. p on figure 2.5.

Also plotted for references on figure 2.5 are the arithmetic, geometric and

harmonic averages of I(,;, and K, .

A power average, with power w = 0.57 is shown to provide an excellent fit

to the curve K, vs. p for proportion of shales below 0.6.

Next, vertical flow (in the z-direction) was simulated over a network of
dimensions (L,,L,,L,) such that: L, /a = L,/a =1,L,/a = 3.25,. Recall
that the vertical range of correlation is a /15. The network is discretized into
n, =mn, =06, n, =12, ie, a total of 432 grid blocks. Thus, the vertical

distance between two grid blocks is 3.25/12 = .27 times the vertical range.

The corresponding results are shown on figure 2.6. The results for high
proportion of shale p >0.6 show extreme fluctuations in the permeabilify field
from one realization of the permeability field to another and cannot be considered

significant.

Again, the average effective permeability K, appears as significantly greater

than the geometric average. The practical conclusions of figures 2.5 and 2.6 are:

« For practical values of shale proportion p <0.5, a power average provides a

good fit to the curve K, vs. p.

o The averaging power increases with the correlation range in the direction of
flow. The upper bound w =1 corresponds to arithmetic averaging for

perfect correlation and laminar flow.
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tions less than 0.6 the power average (w = 0.12) fits
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reference.
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o The practice of using the arithmetic average for horizontal flow and the
geometric average for vertical flow is sound but could be considerably
improved with appropriate power w - averaging.

The averaging power is shown to be independent of the proportion of shale
and dependent on the spatial arrangement of the sandstone/shale network. The
spatial arrangement can be summarized by some statistics which can then be
used to estimate an appropriate averaging power. The proportion of shale is
known through well logs and cores thus, the effective permeability may be

calculated. In chapter 5 the problem of estimating the appropriate averaging

power is addressed.
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Geostatistical Tools

This section contains a general discussion of geostatistics and how some of
its tools may be applied to petroleum engineering and to reservoir
characterization. Specific statistical measures that have been found appropriate
for flow systems are developed in chapter 4. The conventional and commonly

applied aspects of geostatistics are emphasized here.

Geostatistics is a branch of applied statistics that studies phenomena spread
in space and/or time with some degree of continuity. In petroleum applications
the spatial distribution of rock properties such as porosity, permeability, and
saturations is of interest. The procedures and techniques of geostatistics call for a
model of the spatial continuity of the rock property being considered. A large

part of geostatistics is devoted to estimation and, more specifically, interpolation.

The process of estimation must account for all the data available whether it
is in the form of hard data (actual observations or measurements) or soft data
(ex. in the form of a geologist’s interpretation or expert judgement). If a
geologist’s interpretation of a phenomena is to be used it must be quantified in
some manner. Expert knowledge is rarely passed downstream to engineers and
process design people if not in the form of numbers. It is unfortunate, but a fact,
that most small scale qualitative geologic descriptions of an oil reservoir are often
of little use for engineering studies and flow simulations. Using (i.e., coding
adequately) expert knowledge in the interpretation and processing of a spatially

distributed variable may result in a more accurate reservoir model.

Some of the problems in the petroleum industry where geostatistical tools

may be applied are:

1. Interpolating variables (¢,K ,S,,,S,,p) distributed through space. This may

involve gridding a variable towards further reservoir forecasting chores.

2. Defining the spatial continuity of a variable. A quantitative description of

the physical size and spatial structure of a phenomena can be obtained



-31-

through geostatistical tools such as variograms. For example, the spatial
continuity of a shale indicator field may be calculated to assist in predicting

the averaging process for absolute permeability (ref. chapter 4).

3. Combining information from different sources to provide a single estimate of
a variable. For example, one may wish to combine data from well logs, cores,
and seismic to estimate porosity throughout the reservoir. A combined
estimate may be generated that accounts for the different precision and
resolution of each data source. A M.Sc thesis by F. Alabert (Stanford, 1987)

contains a description of a method to do this.

4. Provide means whereby various maps can be generated depending on the
objective (ex. the objective may be to generate a smooth, locally accurate
map or it may be to produce a map that will reproduce the large scale

spatial variability of a variable).

Some basic geostatistical concepts will now be introduced. The intuition
and practical meaning of the various concepts will be stressed rather than the
mathematical rigor. Refer to Journel and Huijbregts (1978) for a more complete

presentation.

To perform any statistical inference it is necessary to assume that the
observations belong to the same statistical population. To average a variable or
to interpolate its value from different locations it is necessary that these locations
are in a statistically ”stationary” field. For example, if we were going to
interpolate oil saturation it would be necessary to define the area within which
interpolation is reasonable. The oil saturations in a particular sandstone
lithology could be assumed statistically stationary. Measurements from nearby or
imbedded shale/siltstone sequences could not be assumed to come from the same
statistical population. The concept of stationarity allows statistical inference

(averaging) over a predefined population or scale of variability.
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Within a stationary field the expected value of the squared variation
between two values of the attribute separated by a distance & does not depend
on the location of the two values but only on their relative interdistance. The

expected value of the squared deviation is represented by the semi-variogram

¥k ):
+h) = -;-E[[z (z)- Z(z+h)P) (2.12)

where Z (z ) is the value of a random variable (ex. porosity) at location z.

Figure 2.7 shows a typical variogram model. The variogram increases with
increasing b and often after a certain distance exhibits a plateau, i.e. two values
are no longer correlated. If the variogram function is independent of direction the
random variable is said to be isotropic. In practice there is no reason for the
variable to be as continuous in one direction as another. The range of correlation
or the distance where the variogram becomes constant is likely much less in the
vertical direction than in the horizontal direction for a horizontally layered
structure. If the variogram depends on direction the variable is said to be

anisotropic.

In practice the actual variogram must be inferred from the available data.
This can be difficult because of lack of information or if the observations are at a
scale too large to see any correlation. If there is no correlation structure, no
spatial resolution can be obtained from estimates and it is difficult to perform
any geostatistical analysis. However, the apparent lack of spatial dependence is
most likely due to the too large spacing and/or imprecision of the data

observations.

A large part of geostatistical theory is devoted to the problem of estimation.
Spatial estimation involves assigning a value of a rock property to a location
where there is no data. Where there is no data the true value is never known and

may only be estimated, hopefully, in a way that the error in estimation is
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A Typical Variogram Model

Varlogrom Function

(k)

C_.._..___-—

Log ssporation h

+(h) = Variogram function = %E‘ {Z2(z)- Z(z+h )%}

h = lag separation distance.
a = range beyond which measurements are no longer correlated.
C = Sill = variogram value beyond range.

Figure 2.7: Typical Variogram Function.
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minimized. Kriging is an estimation technique which minimizes the mean squared

error of estimation.

Kriging provides the linear minimum error variance unbiased estimate of an
unknown value. The estimate is linear in the sense that it is a weighted linear
average of the surrounding data values. Kriging is able to handle information of
different volumes of measurement and uncertainty. For example, if one knew the
porosity of a large block through well testing and the porosity of a small core
plug, both of these observations could be used in the Kriging system. For Kriging

to be used a variogram model must be available.

Assigning the weight to be placed on each of the data values is what is
formalized in Kriging. Intuition would tell us that data values which are close to
the unknown value location should be given more weight. In geostatistics,
closeness is expressed in terms of a “structural distance”, i.e. a variogram
distance specific to the variable and stationary population being considered. Our
intuition would also tell us that if there is a cluster of data, these data are to a
certain degree redundant. Therefore, a datum that is not in the cluster, but at
the same structural distance away from the point to be estimated, should be

given proportionally more weight than any of the cluster data.

Kriging is unbiased in the sense that it honors the "mean” of all the data
available within the stationary zone. It is also best in the sense that no other
linear combination of the surrounding data values will provide an estimate with a
smaller average squared error. The Kriging system for determining the weights
will not be given here. Refer to Journel and Huijbregts (1978) page 304. An
example of Kriging is shown on figure 2.8. The kriging weight given to each

datum satisfies our intuition about distance and redundancy.

One important characteristic of Kriging is that the estimated surface is very
smooth except at locations very close to the data locations. This is a result of the

least squares criteria built into the Kriging system. If the objective of the study is
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An Example of Kriging

Northing
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z = data (porosity) location.
o = point where porosity is to be estimated.
t = 1,2,34,5 = data points.
#; = porosity at point 1.
t . 5
¢, = estimate of the unknown porosity = Yo X ¢
i=1
A; = weight assigned to point s.
NOTE:

1. The variogram model used is the same as in figure 2.5 with
a =10. The value of the sill C does not affect the calculation
of the weights.

2. The clustered data (2,3,4) receive less weight than data which
are not clustered.

3. The data which are close to the point to be estimated (5)
receive more weight than data which are further away (1).

Figure 2.8: An Example of Kriging.
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to produce an unsmoothed surface the kriged estimate would not be adequate.
Another technique such as conditional simulation should be used (see hereafter).
A second important characteristic of kriging is that the estimated value at the
data points is always equal to the data value. It is said that kriging is an exact

interpolator.

Conditional simulation is so called because the simulated profile at the data
locations honors the data values. However, the simulation differs from kriging in
the sense that the spatial variability of the data is reproduced. When considering
flow properties it is important to reproduce the “roughness” of the resulting
surface. Conditional simulation provides a mechanism to do this while honoring
the data where the data are available. The idea is to add a spatially correlated

random noise to the kriged surface.

There are many other aspects to the field of geostatistics and reference books
are available. This brief introduction was intended for those people who have not

been formally introduced to geostatistics.
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Chapter 3

Sensitivity of Reservoir Performance Forecasting to

Flow Properties

Introduction to Sensitivity Study

A data base from an actual reservoir was used to perform this sensitivity
study. The 200 ft thick reservoir unit considered is within a geologically
homogenous reservoir. This sandstone formation contains considerable amounts

of drape/eddy/slough and abandoned channel shale deposits.

The sensitivity of the results (production rate, cumulative production, and in
some cases gas-oil ratio and reservoir pressure) to the input permeability field was
investigated. The results were not found to be sensitive to the averaging
procedure used for absolute permeability. This is due to two facts. The
permeability distribution averaged from the initial detailed information (well logs
and core data) is unimodal. An average of data drawn from a unimodal frequency
distribution is not sensitive to the averaging scheme used as will be shown in
chapter 4. Secondly, the waterflooding production pattern caused the results to
be less sensitive to permeability. The practice of fixed rate injection and fixed
rate production does not show sensitivity of the oil production rate to changes in
absolute permeability. The well pressures are sensitive to the absolute
permeability but, for a fixed total flow rate, the relative rate of oil and water flow
will be essentially the same for a uniform increase in absolute permeability. These

reasons were not realized by the author prior to the sensitivity study.
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Reservoir Description

Data from 22 wells (five of which were cored) were used to create the
detailed reservoir model. Figure 3.1 shows a map of the study area with the well

locations shown. The field considered is of size 8100ft by 8100ft by 200ft.

A conditional simulation of porosity yielded values for 131220 grid blocks
100ft by 100ft by 10ft. The simulation was conditioned to porosity data derived
from well log analysis. The spatial variance structure of the porosity has been
modeled with a variogram. The 3-d variogram model used for porosity is made
up of the following three components:

1. An isotropic nugget effect (white noise) to account for errors of measurement

and other small scale effects.

2. A geometric anisotropy of 25:1 (i.e., the horizontal continuity is 25 times

greater than the vertical continuity) has been considered.

3. An additional component of range 100 ft present only in the vertical
direction to account for the variability induced by changing beds has also

been considered.

The resulting three dimensional variogram model is written:

where:

b = \/hz2 + hy2 + (25-h, )2 = the anisotropic distance (25:1) accounting
for the greater horizontal continuity.

The simulation has been conditioned by the well data within and near the
- study area (ref. figure 3.2). The absolute permeability (horizontal and vertical)
was obtained by selecting block permeability on the basis of the block estimated

porosity.
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Prudhoe Bay — North West Fault Block
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Figure 3.1: The study area is shown with the well locations.
The study area has been divided into quarters on the map.
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The data base is comprised of porosity, horizontal absolute permeability,
and vertical absolute permeability information for 131,220 blocks 100ft by 100ft
by 10ft. For all practical purposes, this dense information represents an

exhaustive knowledge of the study area.

Summary statistics for the porosity, horizontal permeability (Hperm), and

vertical permeability (Vperm) are presented on table 3.1.

Summary Statistics

Description Porosity(%) Hperm (md) Vperm (md)
Arithmetic mean 14.58 295.1 58.7
Minimum 0.00 6.9 ‘ 3.2
Maximum 40.67 2,598.6 290.0
Geometric mean - 194.2 45.8
Variance 44.7 111,540. 1,860.
Standard deviation 6.68 334. 43.1
Coeflicient of variation 0.459 1.13 0.735

Table 3.1: Summary statistics

Block diagrams of block averaged porosity, horizontal permeability, and
vertical permeability are shown on figures 3.2,3.3, and 3.4. The block diagrams
are for the rock properties averaged over the vertical extent of the reservoir unit.
An arithmetic average was used because representative properties are desired
rather than effective properties. From these figures the spatial variability is

clearly apparent.
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H Perm

Figure 3.3: Block diagram of horizontal permeability over the
horizontal extent of the study area.
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Reservoir Production

Basic Reservoir Properties and Characteristics:

Most reservoir properties and characteristics were kept unchanged between
the sensitivity simulation runs. Among these are the fluid properties and other
reservoir characteristics shown on table 3.2. It might be noted that two sets of
two phase relative permeabilities were assumed. The simulator uses these data to

compute the three phase relative permeability by Stone’s method.

Reservoir Characteristics

Per Well Spacing, acres 78.6
Nine-spot Pattern Spacing, acres 314.3
Production Interval, ft 200
Liquid Production Rate, STB/D 4,800
Voidage Replacement with Water,% 100 and 90
Initial Pressure, psia 5481
Bubble Point Pressure, psia 5015
Surface Oil Density, Ib/cubic ft 55.9
Surface Water Density, Ib/cubic ft 62.43
Water Formation Volume Factor, RB/STB 1.003
Water Viscosity, cp 0.31
Water Compressibility, 1/psia 3.0E-6
Surface Gas Density, 1b/cubic ft 0.0646
Rock Compressibility, 1/psia 3.5E-6
Well Diameter, ft 0.458

Table 3.2: Reservoir characteristics.
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Two water injection schemes were considered for a liquid production rate set
at 4,800 STB/D. One scheme results in 100% voidage replacement, the other
injection scheme results in 90% voidage replacement. Since reservoir pressure is
initially above the bubble point, the 100% voidage replacement scheme maintains
pressure above the bubble point throughout the simulation run, while, the 90%

voidage replacement scheme does not.

A diagram of the inverted nine-spot pattern is shown in Figure 3.5. It
consists of a single injection well in the center of the pattern and a total of eight

production wells on the periphery of the pattern.
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Discretization Error:

This study requires comparisons of production forecasts made from reservoir
simulations with different block sizes. It is thus necessary to quantify the error

imparted by different block sizes.

The Eclipse reservoir simulator, version 84/9, developed by Exploration
Consultants Limited has been used in this study. The reservoir behavior under a
production scheme is described by a set of partial differential equations. The
finite difference approximation to the partial differential equations sets an upper
limit on how large the finite difference grid blocks can be. If the grid blocks are

larger substantial numerical dispersion will occur.

To study the question of numerical dispersion the basic reservoir has been
considered for different levels of discretization. Uniform rock properties were
assigned over the entire reservoir (¢ = 14.58%, K, = 295.1 md ,
K, = 58.7 md). The reservoir was produced for a set period of time using a
large block size, the production history was recorded, and progressively smaller
blocks were used for the same time period and production scheme. The resulting
production histories for the various cases can be compared to judge the impact of

numerical dispersion and at what level the numerical dispersion is significant.

For the 100% voidage replacement case the total field oil production rate
and the cumulative field oil production can be compared. Figure 3.6 shows the
field oil production rate versus time for the five block sizes considered. The five
block sizes considered: 5x5x5, 7x7x5, 13x13x5, 17x17x5, and 37x37x5. The results
clearly show the problem of numerical dispersion. There are notable decreases in
the oil production rate corresponding to breakthrough at the side and then the
corner wells respectively. As the block size increases the resolution decreases and
the breakthrough times are not as distinct. The first breakthrough appears
earlier for cases with coarser discretization. The second breakthrough occurs later

as the discretization level gets coarser. All the simulations are ordered as they
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Figure 3.6: Field Oil Production rate versus time for the 100%

voidage replacement runs.
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the 100% voidage replacement runs.
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should be and as the discretization becomes finer the production history appears
to be approaching a unique history. It should be noted that with porosity and
permeability heterogeneities present one would expect the results to appear
similar to the cases with coarse discretization. In this example the dispersion is
caused solely by the size of the grid blocks. In the presence of heterogeneity the

cause of dispersion would be the heterogeneity itself and the block size.

Figure 3.7 shows the cumulative field oil production versus time. The curves
seem to approach the same result as the discretization becomes finer. The
cumulative production at the end of 25 years is greater for the simulation runs
made at a finer discretization. The production rate, however, converges at the
end of 25 years. If the production history would have been simulated for a longer
period of time one would expect the cumulative production for all cases to

approach the same value.

Figure 3.8 shows the field oil production rate versus time for the 90%
voidage replacement runs. The behavior is very similar to that shown for 100%
voidage replacement. Figure 3.9 shows the cumulative field oil production versus
time. Again, the results seem close to the results for the 100% replacement case.
The average field pressure and field gas oil ratio can be compared in this set of
runs. Figures 3.10 and 3.11 show how these two parameters change with time for
the different levels of discretization. The average field pressure does not seem to
be affected by the level of discretization. The gas oil ratio is more sensitive to the
discretization. Table 3.3 summarizes the findings for step 1 of the discretization
study. The MOC or Measure Of Closeness is defined as the area between the
history being considered and the base case curve divided by the area under the

base case curve. This allows a quantitative comparison of the various runs.
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Summary For Step 1 - Discretization Error

Description base case

# of blocks 37x37x10 17x17x4  13x13x4 9x9x4 5x5x4
MOC (FOPR) (100%) 0 0.034 0.051 0.087 0.215
MOC (FOPT) (100%) 0 0.021 0.031 0.052 0.119
Production (100%)-Mstb  18270.7 18003.1 17869.0 17608.3 16860.2
MOC (FOPR) (90%) 0 0.029 0.045 0.078 0.195
MOC (FOPT) (90%) 0 0.021 0.032 0.053 0.115
MOC (FPAV) (90%) 0 0.0036  0.0051  0.0081 0.017
MOC (FGOR) (90%) 0 0.032 0.048 0.078 0.190

Production (90%)-Mstb ~ 17356.9 17055.8 16907.3 16626.8 15863.3

Table 3.3: Summary for Step 1 - Discretization Error.

FOPR = Field Oil Production Rate.
FOPT = Cumulative Oil Production.
FPAV = Average Field Pressure.
FGOR = Field Gas Oil Ratio.

Remarks:
1. The measure of closeness (MOC) reflects what is seen visually on the plots.

2. The cumulative production at the end of the 25 year period is higher for the

cases with finer discretization.

3. The cumulative production for the case of 100% voidage replacement is

greater than for the case of 90% voidage replacement.

4. The measure of error in both cases (100% and 90% voidage) is comparable
for the different levels of discretization. This implies that a suitable level of

discretization for one case would be appropriate for the other case.
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5. Using 13 by 13 blocks in the horizontal plane would give adequate resolution

for simulation runs to be performed on the Apollo computer.

The second step in the study of discretization looked at vertical
discretization. The areal discretization was held constant at 13 by 13 blocks and
the vertical discretization was changed to 3 blocks for the 200 foot interval to
4,5,6, and 7. There is no need to present the results in graphical form. The
production history was virtually identical regardless of the vertical discretization.

The MOC defined above would be on the order of 1075,
Remarks:

1. The vertical discretization is not an important factor for the case considered
here. The flow system that has been considered approximates two
dimensional flow and the vertical discretization has very little impact. Two
dimensional flow is approximated due to the uniform properties and the
production practice of injection and production throughout the entire

vertical extent of the reservoir.

2.  The reservoir unit considered is thin compared to the horizontal extent. This

also decreases the impact of the vertical discretization.

3. Heterogeneous rock properties may enhance the impact of vertical
discretization. Flow may bypass low permeability boundaries if the vertical
resolution is “good”. In future work with heterogeneous properties this

aspect should be kept in mind.

4. It is now possible to judge the difference between runs of unequal
discretization and see if the numerical dispersion is due to discretization or

some other feature of the input data.
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Alternate Averaging Processes for Absolute Permeability

Given a particular heterogeneous reservoir model with detailed
¢, K, , and K, information available - how should this small scale information
be averaged to obtain simulation block data? Ideally, the small scale information
should be used directly in the simulator. However, this is not feasible due to

storage and processing limitations and may not be necessary in any case.

The conventional averaging processes for permeability (arithmetic average
for horizontal permeability and geometric average for vertical permeability) is
compared to more sophisticated averages. The first part of the study is carried
out by averaging over small volumes (i.e., block volumes less than the level at
which numerical dispersion occurs 13x13x5). A second study is then performed
with the permeability being averaged over larger volumes while maintaining the

same size of blocks in the simulator.
Averaging Process - Impact on Simulation Results:

In the case being considered, detailed information is in the form of
¢, K; , and K, values for grid blocks 100ft by 100ft by 20ft (200,000 ft3 ). Note
that a great deal of resolution is already lost when averaging core data (fraction

of a ft? ) to these smallest grid block data.

A bench mark run has been made on a Cray with 13690 blocks (100ft by
'100ft by 20ft). The subsequent runs will be made at a constant block size of 284t
by 284ft by 67ft (5,400,394 ft3) or 27 times the volume of the small scale
information. The production history obtained with the averaged data will be
compared to the results from the bench mark run. The averaging process that
provides the most closely matched production history will be taken as the
"correct” averaging process for the scale of i;lformation considered. After the

appropriate averaging process is determined, the scale of averaging is studied.
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The different power - waveraging schemes that will be considered are: (Note:

The porosity is always averaged with an arithmetic average.)

Total Field Oil Production - Selected Runs

N O Ot Wb W =

Run ID. 100% replacement  50% replacement

. Heterogeneous Data(base case) 20896.0 -

. K} w=1.0,K, w=0.0 (traditional) 20373.9 79444
. Block Dependent (see chapter 5) 20358.8 9004.0
. K} w=0.6,K, w=0.1 20386.0 8242.5
. K; w=0.8,K, w=0.1 20380.0 8069.8
. K w=0.6,K, w=0.2 20386.2 8243.0
. K; w=0.8,K, w=0.2 20380.9 7620.7

Table 3.4: Total Field Oil Production obtained for alternate

averaging of absolute permeability.

Remarks:

For 100% voidage replacement the impact of averaging absolute

permeability is nil.

The averaging powers for runs 4 through 7 were selected on the basis of
numerous network simulations documented in chapter 5. It was observed
that the averaging power for horizontal permeability was usually in the
range 0.6 to 0.8 and the averaging power for vertical permeability was
normally within 0.1 to 0.2. These estimates correspond to the range of shale

proportion and shale geometry of the study area.
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o The largest difference between final production for the 100% voidage
replacement is 0.13% while the difference for 50% voidage replacement is

12%.

o Although the rock property data is identical for the 100% and 50% voidage
replacement runs, the case that gives the highest production with the 100%
case does not give the highest with the 50% case. There are interactions
with phase behaviour characteristics and no conclusions can be drawn from

this limited amount of data.

o Since absolute permeability is a constant that relates flow rate and pressure
for a fixed geometry and fluid it is not surprising to see the more highly

stressed situation (50% replacement) being more sensitive to permeability.
Volume of Averaging - Impact on Simulation Results:

The second stage of the study will attempt to determine over which volume
the small scale information can be averaged without affecting the simulation
results. It is already known that the simulation results are not sensitive to the
averaging procedure used. It is not known yet over which volume the block data

can be averaged before affecting the results.

To answer this question the permeability measurements have been averaged
over the entire NW corner (corresponding to run ID#1 on table 3.4). The
arithmetic average of the horizontal permeability and geometric average of the
vertical permeability have been considered. The production history has been

simulated with the same heterogeneous porosity data base.

The results were not found to be sensitive to the volume of averaging. The

reasons for this are discussed in the next section.
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Remarks on Sensitivity Study

The performance forecasting results were not found to be sensitive to the
absolute permeability. The oil production rate remains unchanged for different

levels of absolute permeability due to the simulated production practice.

The production practice involved injecting water at a fixed rate (within well
bore pressure constraints) and producing the equivalent amount of fluid (oil and
water). The relative flow of oil and water, the well bore pressure, and other field
measurements were recorded. In hindsight it is not surprising that this production
scheme shows little sensitivity to absolute permeability. As the absolute
permeability is changed the pressure required to inject the target flow rate

changes but the other measurements remain unchanged.

The well pressures are thus the sensitive measurements with this production
practice. The mathematical model used to relate well bore size, rock properties,
productivity and injectivity indices, and other information to compute well flow

rates and pressures is beyond the scope of this study.

To illustrate that the relative flow rates of oil and water will remain
unchanged consider a single grid block with a fixed total fluid flow rate. The
relative flow of oil and water is computed as the ratio of the oil phase
transmissibility and the water phase transmissibility. If the absolute permeability
is changed this ratio remains unchanged. Thus, with the reservoir model
considered the absolute permeability could be changed from 35md to 800md

without altering the relative flow of oil and water.
Some interesting avenues for future research have been identified:
o The presence of porosity heterogeneity and its link to permeability

heterogeneity and overall recovery has not been considered. This is an

important area of sensitivity that should be explored.
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o Multiphase flow properties might influence the development of preferential
flow and the impact of heterogeneity on “effective” multiphase flow

properties should also be investigated.



-59-

Chapter 4

Univariate Distribution of Permeability

General Remarks:

The univariate distribution of permeability depends on the scale at which
the permeability measurements are observed. Due to the sedimentary nature of a
sandstone/shale reservoir the permeability distribution at some scale will be
bimodal. There will be a mode corresponding to mostly sandstone and a mode
that corresponds to mostly shale. As the scale of observation becomes smaller
more modes would become apparent and one will be able to identify different
types of sandstone and shale. As the scale of observation increases each
measurement will be due to a mixture of sandstone and shale causing the

distribution to become unimodal.

The assumption made here is that at some particular scale the two
component mixture of sandstone and shale can be approximated by a binary
distribution, which only locates the central sandstone and ecentral shale
permeabilities. It is intuitively clear that the amount of shale and its spatial
arrangement will be very important. Indeed, Pryor and Fulton, 1976; Fogg, 1985;
Haldorsen and Chang, 1985; and Desbarats, 1986 have all shown that the
dominant heterogeneity affecting flow is the dispersed low permeability shale. On
the basis of this well documented practical experience the binary distribution

approximation is deemed relevant, at least as a first approximation model.

In the first chapter methods for calculating effective permeability such as the

perturbation approach were discounted because they did not consider the two
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component aspect of the problem. If the goal were to infer the effective
permeability of an essentially clean sandstone (e.g. corresponding to an aquifer),
the assumptions required by the perturbation approach would be reasonable.
However the problem addressed in this research is more complex: inferring the

effective property of a two component spatially correlated, random field.

If the univariate distribution of measured permeability appears unimodal
l.e., does not show distinct modes corresponding to shale and sandstone, one of

the following explanations is likely:

o  The shales are very small relative to the measurement volume, hence some
implicit averaging has already been performed yielding the unimodal

distribution.

e  The shales have not been sampled as systematically as the sandstone, which

is not an un common practice, however unfortunate.

An average from a unimodal distribution will be less sensitive to the
averaging power than an average from a bimodal distribution. Two distributions
are shown on figure 4.1, one of which is distinctly bimodal and another which is
unimodal but skewed corresponding to what may be observed after a first
implicit step of averaging. For each distribution the arithmetic and geometric
averages may be compared to see the effect of using a power w = 1 (arithmetic
average) and w = O (geometric average). The difference between the geometric
and arithmetic mean in the bimodal case is 506md while in the unimodal case the
difference is only 41md. This suggests that for a unimodal distribution the

average is less dependent on the averaging power.
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Bimodal Distribution
Shale Distribution: Lognormal (mean=>5md, s.d.=10) - 20%
Sandstone Distribution: Truncated Normal (mean=1000md, s.d.=200) - 80%
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Figure 4.1: A comparison of a bimodal and unimodal
distribution of permeabilities. The bimodal distribution
represents a sandstone/shale mixture while the unimodal
distribution represents a distribution after averaging. The
w==10,and -1 power averages are shown for each
distribution.
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Figures 4.2 shows two distributions, one which is asymmetric another which
is symmetric. The averaging power will have more impact on an asymmetric
permeability distribution while having no effect on the symmetric truncated
normal distribution shown. However, the greatest sensitivity is not introduced by
the shape of the distribution but rather by the bimodal nature of the

permeability distribution.

In other words, averaging absolute permeability is indeed a problem and a
severe one provided that one works with the original (essentially) bimodal
distribution. If prior averaging, either implicitly through data defined over too
large a measurement volume or explicitly through some averaging technique, has
been performed yielding a unimodal distribution, further averaging will have
little impact. This small impact does not mean that the prior implicit or explicit
averaging process was correct, and this process should be critically assessed
because it does have an impact on the large scale predictions. In short, all the
action resides at the first averaging step, usually performed at the data-taking

step and/or well log analysis.

This point is crucial to the entire problem of scale averaging. For this reason
some examples will be presented to show the impact of averaging on the

distribution of permeability.
Scale Averaging of a Binary Random Variable:

Starting from a sandstone/shale composite media described by a binary
permeability distribution it is interesting to see how the distribution of
permeability will change as the volume of observation increases. At the limit
when the volume of observation becomes the entire composite volume the initial

binary distribution reduces to a single effective permeability value (or tensor).

With certain assumptions the distribution of block effective permeabilities, in
a given direction, may be approximated by a binomial distribution. The

assumptions required are:
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Asymmetric Distribution
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Figure 4.2: A comparison of an asymmetric and symmetric
distribution of permeabilities. The w = 1,0, and -1 power
averages are shown for each distribution. As the distribution
becomes more symmetric the difference between the different

averages becomes less.
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1. The sandstone/shale mixture is composed of small equal units that are either

100% sandstone or 100% shale.

2. The sandstone and shale units are located independently one from each

other.

3. The eflfective permeability of a block for a given proportion of shale in the
block is determined by a power average with a constant averaging power

independent of the shale proportion.

4. The proportion of shale in the sandstone/shale mixture is known or may be

approximated.

It is certainly valid to consider the sandstone/shale mixture as composed of
small equal volume units of sandstone and shale. However, the strongest
assumption is that they are located independently of one another. This
assumption is a first approximation and methods to relax this assumption are
discussed later. Indeed, the interesting case is when a spatial correlation structure

is present.

It has been shown in chapter 2 (p 23) that the averaging power is
independent of the proportion of shale for the interesting range of shale
proportions i.e., p <0.5. For blocks with a greater amount of shale this does not
hold. However, the permeability of these blocks will be very low and the exact
value is not practically important. The overall proportion of shale may be
estimated by well log analysis and from core data. So, the last two assumptions

are deemed less restrictive.

It is illustrative to see how the transition from a binary distribution to a
single effective value is made, as the block size increases. Consider a block
volume made up of n small elementary volumes. According to the third
hypothesis noted above the block effective permeability K, may take only n +1
permeability values, each permeability value corresponding to the number of

actual shale units in the block (i.e. 0,1,2, .... ,n )- In reality, K, could take many
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possible values corresponding to -1 < w > 1 the limitation to n +1 permeability
values is due to hypothesis 3 which assumes a constant averaging power. The
n +1 permeabilities are calculated by the equation:

1 1

L | w w w w @

K, = | X —K; = |p; Ko + (1-p; ) K¢ (4.1)
{ =0

where:

J =0,1,2,.....,n the number of shale units in the block.

Ke, = effective permeability of the block given 7.

pj = J - a fractional volume.
n

Knowing the overall proportion of shale (p ) the probability of each K ¢, Ay

be calculated considering a binomial distribution for FE

b(j3n,p)= —J—,(—'—J-)—,p i (1-p )i (4.2)

n_.
b(7;n,p)= the probability of obtaining j shales after drawing n units

randomly with an overall proportion of shale p.

Figure 4.3 shows the effect that averaging has on the cumulative distribution
of permeability. The discrete distribution is seen as a series of step probabilities.
These probabilities are independent of the averaging process (averaging power)
used. The averaging process only changes the scale on the permeability (abcissa)
axis. A linear scale results from an arithmetic average. A geometric average
amounts to arithmetically average the natural logarithms of the sandstone and
shale permeabilities and then take the exponential of the result. Therefore, a log
scale on the permeability axis would cause the step probabilities to be equally
spaced. The two previous cases are but particular cases of power averages and in

general the permeability axis scale depends on the appropriate averaging power.
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Figure 4.3: The effect of averaging on the cumulative
distibution of permeability is illustrated. A binary distribution
is obtained when each observation is either shale or sandstone.
After complete averaging the permeability is characterized by a
single value K,. In between these extremes a binomial
distribution is found. The step probabilities are independent of
the averaging process. The location of the permeability values
(K'y through K, _,) is determined by the averaging process.
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The formula for the binomial frequency distribution (4.2) is not very handy
because for large n it is not possible to realistically compute the corresponding
large factorial numbers. However, a normal distribution may be used to
approximate the binomial as n becomes large. The development of this
approximation for a power averaging process is given in appendix B. Figure 4.4
shows a series of cdfs for averaging powers 0, 0.5 and 1, the proportion of shale is
fixed at 0.25 and n took the values: n=4,8,16,32. Figure 4.5 shows a series of
cdfs for a fixed averaging power (0.5) and proportion of shale (0.25) with n
varying from 4 to 512. Figure 4.6 shows the cdfs for n=32 and w = 0,0.5, and 1
with the proportion of shale varying from 0.1 to 0.3.

Some remarks:

e As the averaging power increases the expected value of the block
distributions also increase. Similarly, but to a lesser degree, as the number of
units n increases the expected value increases. With a greater number of
units (n ) the dimensionality of the network is greater causing more paths for

flow and the effective permeability is increased.

e An important observation is that the central location of the distribution
depends on the averaging power. If a distribution of already averaged data is
used, it is essential that this prior averaging process be correct. If the
averaging is performed incorrectly at a small scale it is unlikely that

subsequent averaging could yield the correct result.

e As n increases the distribution becomes less dispersed around its central
location. This is, in part, due to the assumption of independence of the

sandstone-shale elementary volumes.

e« For an w = 0 power average (geometric averaging) the distribution of the
block permeabilities is lognormal. That is to say: if a logarithmic axis for

permeability is used the distribution would appear as a normal distribution.
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CDF For block distribution p=0.25,n=4,8,16,32,w=0.0,0.5,1.0
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Figure 4.4: The cumulative Distribution Functions (cdfs) for
block averaged permeability are shown. The three sets of curves
correspond to averaging powers of 0, 0.5 and 1.0. The number
of sub-blocks being averaged (size of the block) increases from 4
to 32. The effective permeability increases as w increases and as
w approaches 1 the distribution becomes more normal.
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CDF For block distribution p=0.25,n=4,...,512,w=0.5
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Figure 4.5: The Cumulative Distribution Functions (cdf) for
block averaged permeability is shown. The averaging power is
fixed at 0.5. The number of sub-blocks increases from 4 to 512.
The distribution approaches a step distribution as the number
of sub-blocks increases.
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CDF For p=0.1,.2,.3,n=32,w=0.0,0.5,1.0
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Figure 4.8: The Cumulative Distribution Functions (cdf) for
block averaged permeability is shown. The number of units is
fixed at 32. Three averaging powers (w==0.0,0.5,1.0) are used
and the proportion of shale is varied from 0.1 to 0.3. The effect
of the shale proportion can be compared to the effect of the
averaging power.



-71-

Block Distribution Kse=1000, Ksh=1, p=0.25
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Figure 4.7: Probability Distribution Functions (pdf) for block
averaged permeability calculated with a geometric average are
shown. If a log permeability scale is used a normal distribution
is obtained.
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This idea is easily generalized so that the scale is interpreted as a power
transformation. Figure 4.7 shows a series of probability distribution
functions (pdfs) that correspond to geometric averages. The pdfs appear
normally distributed if a log scale is used. The expected value of these pdfs
(the peak in the normal distribution) increases as the number of units n

increases.

o  Theoretically w can vary from -1 to 1, however practical experience has
shown that it is most often between 0.0 and 1.0. It is in this range that the
averaging power has a large effect on the absolute value of the effective
permeability. As the averaging power becomes less than O the effective
permeability approaches rapidly the shale permeability and for all practical
purposes an impermeable sandstone/shale system will exist. Although the
relative effect for lower averaging powers is similar, the effective permeability
can be considered as very low thus removing the need for determining

precisely the corresponding low w.

Up until this point the sandstone and shale units have been located
independently. This is not a realistic assumption due to the sedimentary nature
of sandstone/shale sequences. The effect of introducing spatial correlation would
cause the distribution of block effective permeability to be more dispersed. To
correct for this, an "effective” n, smaller than the true n could be used. The
dispersion introduced by a smaller n, would mimic the dispersion due to spatial
correlation. The dispersion would be corrected by, in effect, grouping the shales
and sandstone into larger blocks allowing for the spatial dependence of the
sandstone and shale. Implementation of this effective correction is beyond the

scope of this research but there is potential for future research in this area.
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Selecting the Shale Permeability:

As we have seen before the power average of a a two component mixture is

written:

K = [P "K' + (1-p) - ng,]w
For a sandstone/shale mixture the shale permeability is essentially zero. For all
realistic pressure gradients applied in practice there will be no flow through the
shale component. The shale permeability may be 0.1md or 0.001md but when
considered with the high permeability of the sandstone phase (typically 500-
1500md) this difference in shale permeability should be of no practical

consequence.

In any case, the very low permeability of the shale would be difficult to
measure accurately. For a given size of core sample (ex. a cylindrical core plug
2cm radius and 2cm thick) if a 3 atm pressure drop was used to measure the
permeability of a sandstone sample (K,, = 500md) a 1,500,000 atm pressure
drop would be required to obtain the same flow rate in a shale sample
(K,, = 0.01md ). Of course, such pressures are unrealistically high and a lower
flow rate would have to be accepted, nevertheless, a reasonable measurement of

such a low permeability would be difficult to obtain.

When considering the power average expression of the effective permeability
the shale permeability can not be set to zero. If set to zero the geometric average
is not defined and for all negative averaging powers the effective permeability is

similarly undefined.

As mentioned above there is practically no difference in shale permeability
once it is below a certain level because there will be essentially no flow through
the shale. The flow through the mixture will be the same regardless of just how
low the shale permeability may be. The power average - calculated effective

permeability of the shale will, however, depend on the shale permeability chosen.
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Impact of Ksh(low) and the Averaging Power p=0.25
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Figure 4.8: The effective permeability is plotted for various
averaging powers versus shale permeability. The sandstone
permeability is fixed at 1000md and the proportion of shale is
fixed at 0.25. The averaging power is the important parameter
in determining the effective permeability. The selection of the
low shale permeability will affect the resulting effective
permeability for low powers (w<0.2).
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Figure 4.8 shows how the calculated effective permeability will vary for different
values of low shale permeability and different powers of averaging. It is clear
from these figures that correctly identifying the averaging power is the important
issue. For averaging powers less than 0.2 the shale permeability has an important
impact on the calculated effective permeability. Figure 4.9 shows the relative
change in effective permeability for averaging powers less than zero. The block
effective permeability in all of these cases is less than 10md. If the permeability is
this low it is not practically important to have an accurate estimate of the

effective permeability.

Figure 4.10 shows how the effective permeability for a geometric average is
affected by the selection of the shale permeability. It is clear from this figure
that the problem is not negligible.

This consequence can not be ignored and the way to avoid complications is

as follows:

1. If the shale permeability is known through reliable measurements there is no

problem.

2. If the shale permeability is estimated to be zero or is unknown an arbitrarily
low shale permeability can be selected. All the regression analysis that is
subsequently performed using different statistics for shale geometry will
correspond to the value of the shale permeability chosen. The value chosen
should be reported and if, at some later time, data is made available the

regression should be modified.

This analysis raises the question: what has been done up until this point
with the geometric average? Previous work dealing with averaging considered,
essentially, homogeneous media and no low permeabilities were encountered. Any
geometric average can not accept permeabilities that are zero, and would be very

sensitive to any proportion of very low permeabilities.
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Figure 4.9: The effective permeability is plotted for averaging
powers w<O0 versus shale permeability. The sandstone
permeability is fixed at 1000md and the proportion of shale is
fixed at 0.25. As the averaging power decreases the relative
impact of the shale permeability increases. Although in practice
for such low permeabilities there will be essentially no flow in
any case.
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impact of Ksh(low) for the Geometric Average p=0.25
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Figure 4.10: The effective permeability versus shale
permeability for a geometric average is shown. The sandstone
permeability is 1000md and the proportion of shale is 0.25.
Note the change in effective permeability due to the shale
permeability. If the shale permeability is set to zero the
geometric average would always provide a zero effective
permeability. In practice, shale is impermeable and a geometric
average is used. This shortcoming of the geometric average
must be addressed.
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Adding Uncorrelatable Shales

Reservoir heterogeneities may be categorized as large scale deterministic
shales or small scale stochastic shales. Large scale shales may be handled
deterministically in the finite difference grid block model. The stochastic shales

must be accounted for in the creation of the grid block model.

At this point it is important to note that the accuracy of any method used
to correct block properties for stochastic shales will only be as good as the
information available. As mentioned in the last section; the proportion of shale is
a crucial parameter. The spatial distribution of the shales is equally important

and much more difficult to assess.
Two apprcaches may be taken to account for the stochastic shales:

1. Correct the flow properties arbitrarily through a history matching procedure.
A procedure of this type is not unique and the results can not be expected to

represent the true block effective permeability.

2. Add the shales into each reservoir block and average the permeability with
an appropriate averaging scheme. The averaging must be performed since
the stochastic shales (by definition) are too small to be accounted for in the

simulation model.

To develop or test any technique to average permeability the small scale
shales must be simulated and the resulting sandstone/shale network considered as
one possible real situation. The problem of simulating a shale indicator field in a

fast (computationally) and realistic manner will now be discussed.
Three methods are proposed to simulate a shale indicator field:

1. Geometric Simulation.

2. Depositional Process Simulation.

3. Geostatistical Simulation.
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Geometric simulation was proposed by Haldorsen (1984) and elaborated on
by Srivastava (1986). Shale units are characterized by certain geometric
parameters such as length and width. The shale centroids may be randomly
located and their geometry is randomly drawn from known distributions of
length, width, and thickness. The procedure of randomly locating centroids
within a matrix is known as the Bombing model. The shale shapes are assumed
to be rectangular paralellipipeds, ellipsoids, or triangular prisms. Shale units are
generated until the correct volume fraction of shale is present. In the procedure
proposed the direction of the long axis is controlled so that the local paleocurrent
directions may be approximately honored. Other conditions concerning clustering

can be imposed so that the resulting model appears realistic.

This method has the advantage of using some geologic knowledge and
statistical measurements. This procedure reproduces the geometric parameter
distributions that can be measured in the field. However, it is difficult to
condition the resulting realizations to known occurences of shale (intersected by

well). The simulations are obtained relatively fast.

Depositional process simulation involves simulating the depositional process
through time, allowing for sediment influx, erosion, uplift, sediment transport,
etc. After several million years of simulated geologic time the resulting grain size
distribution will give a sand/shale model. Coarse grained sediments form
sandstone while fine grained sediments result in shales. This procedure is
documented in a Ph.D. thesis by Tetzlaff (Stanford University, 1987). The
advantage of this method is that the simulated indicator field has been obtained
through physical process simulation and the models are realistic looking. A
number of drawbacks make this method unsuitable for the problems addressed in

this thesis.

The initial state (i.e., sediment properties, physical setting, fluid transport

properies) is set and the model takes over. Thus, feedback on important
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parameters is difficult to obtain. It is also difficult to condition the simulation to
known shale occurences. The simulation of flow over several million years requires
a considerable amount of computer time which limits the complexity of the

model that may be considered.

The third feasible method to simulate a shale indicator field is the method of
geostatistical simulation. A standard normal variable that honours the indicator
variogram describing the geometrical size and anisotropy of the shale bodies is
simulated. If data is available the simulated random field can be conditioned to
known data easily. The shale indicator field is obtained by applying a predefined
cut off on the simulated Gaussian fields. The cut off is chosen such that the
proportion of shale is honoured. Each sub block whose standard normal
assignment is greater than the cut off will be defined as e.g. a shale block. The
reader is refered to Journel and Isaaks (1983) for a more detailed description of

this method.

Once the indicator variogram model describing the presence/absence of
shales has been determined and the volume fraction of shale is known; numerous
simulations may be quickly obtained. Another advantage of this approach is the
possibility to test how sensitive average flow properties are to the statistics that
are used (variogram model, anisotropy, range of correlation, and proportion of

shale).

The simulated indicator field will on average represent the shales from which
the variogram was inferred. However, a particular realization will not necessarily
resemble the geometry of the shales. This method is well documented and used
successfully in the thesis of Desbarats(1986). An indicator variogram does not
relate directly to flow but to the geometry of heterogeneities. The actual flow
paths and detailed measures of connectivity are described by the multivariate
distribution of the shale indicator field. The variogram or two point correlation

structure do not fully capture all the flow characteristics of the mixture.
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The indicator simulation approach has been used for this study because its
drawbacks were not assessed to be that severe and the advantage of quickly
obtaining a great number of realizations was desired. The ability to determine
how sensitive the flow is to parameters such as the variogram and characteristes

of a particular realization was also desireable.



Chapter 5

Estimating Effective Absolute Permeability

Introduction to Absolute Permeability Research

In this chapter the problem of estimating block effective absolute
permeability in heterogeneous reservoirs is addressed. A binary type permeability
distribution is assumed and the effective permeability is taken as a power average
of the component permeabilities. The averaging power will be related to
statistical parameters characterizing the spatial arrangement of the sandstone
and shale. These statistics are chosen such that they can reasonably be inferred
in practical cases. It is shown that knowledge of these statistics allows a
prediction of effective permeability which is more accurate than traditionally

obtained.

The work presented here comprises two steps. The first step corresponds to
an evaluation of the power averaging approach considering vertical flow and an

indicator simulation of the sandstone/shale sequence.

Then a second type of simulation is considered to provide greater flexibility
and control. A bombing type model is used to simulate the sandstone/shale
sequence. The bombing model allows generation of large realizations while
providing a better control on the geometry of the shale bodies. The Eclipse
black-oil simulator is used in this step to allow an easy transition to the
evaluation of two phase flow. The Eclipse simulator because of its industry

acceptance was chosen in preference of a simulator developed in-house.
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To determine if there exists statistical measures that are appropriate for

predicting the averaging process the following procedure is used:

1. Different sandstone/shale networks are simulated to provide models for flow
simulation. The models can reproduce observed spatial correlation structures
or they can reproduce other characteristics of the sandstone/shale sequence

such as distribution of lengths, anisotropy ratio, etc.

2. A steady state, single phase flow simulation program is used to determine

the effective absolute permeability of each sandstone /shale network.

3. From the component permeabilities and the proportion of shale the
averaging power w which identifies the network eflective permeability can be

retrieved.

4. The averaging power w is then related to statistical parameters describing
the spatial arrangement. It has been shown (chapter 2) that the averaging
power w is independent of the proportion of shale for a large range of shale
proportions (p <0.5). Therefore, w depends solely on the spatial arrangement

(connectivity) of the shales.

In practice the procedure would be reversed: the averaging power would be
predicted from experimental spatial statistics and the corresponding block

effective permeability would be retrieved.
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Estimation of K, based on a Continuity Parameter

The three dimensional reservoir blocks are made up of elemental sub-blocks
that are either 100% shale or 1009 sandstone. Figure 5.1 shows such an
assemblage of sub-blocks. The permeability of the elemental sub-blocks may take
one of two values, that of sandstone or that of shale. Consider the shale
indicator random function I(z ) defined for each elemental sub-block centered at

point z:

I(z)=1if z is in shale

= 0 if z is in sandstone (5.1)

The indicator function I (z ) has the following first and second order moments:

E{I(z)} = p = volume fraction of shale in the large block

Cov {I(z)I(e+h)} = C(h) = p(1-p) o(h)

Var {I(z)} = C(0) = p(1-p)

k)= C(0)- C(h) and: p(h)= C(h)/C(0)

with p(h) and ~(h) being respectively the correlogram and variogram of the
random function I(z ). Controlling the shale indicator variogram k) ie p(h),
allows controlling the probability that two 1's will be connected. For a
sandstone/shale realization the connectivity of the shales can be measured by
p(h).

The dimensions of the simulated reservoir blocks have been expressed in
terms of the variogram range in the three coordinate directions. It has been
assumed that there is a finite range for 4, (k) and that it will be isotropic in the
horizontal plane. There is a vertical to horizontal geometric anisotropy with the
vertical range less than the horizontal range. The discretization is expressed as
the number of points that describe the variogram range. For example: if the

variogram range in a particular direction is 15 m (ie. @, = 15 m), and the block
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Typical Discretized Reservoir Block
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Figure 5.1: A typical discretized block.
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size L, is 30 m with sub-blocks each 2 m (d, ). The block length given will be
30/15 = 2-a, and the number of discretization points will be presented as
15/2 = 7.5.

A constant shale permeability (Ksh ) of 0.1 md, and sandstone permeability
(Kss) of 1000 md has been used throughout. An exponential model with a
vertical to horizontal anisotropy 1/15 has been considered for the indicator

correlogram p(h ):

R = k2 + b2+ (154,7)

by, hy, h, = rectangular coordinates of the vector .

The geometrical anisotropy of 1/15 implies that the range of correlation in the

vertical direction is one fifteenth the horizontal range of correlation.

A large number of simulations for vertical flow were initially performed.
The block size was 0.8-a, by 0.8-a, by 1.5-a,, with a discretization of 5 by 5 by
10. A scatterplot of the averaging power versus the proportion of shale (see figure
5.2) shows that the averaging power is independent of the volume fraction of
shale. The correlation between the averaging power w and the volume proportion
of shale p for the 4000 runs was found to be 0.07. Thus, the earlier result
(chapter 2) that w does not depend on p is verified.

Given a 3-d indicator field it is necessary to extract some simple and easily
inferable statistics that would relate the 3-d configuration of shale to the ability
of the field to flow fluid (effective permeability). Two such statistics would be a
measure of spatial continuity along the flow lines and a measure of spatial
continuity perpendicular to flow. As the spatial continuity of the shales in the

flow direction increases it is expected that the flow would increase, thus the
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Averaging power versus Proportion of Shale
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Figure 5.2: A scatterplot of the averaging power versus the
proportion of shale. The averaging power appears independent
of the proportion of shale over the range observed on this
figure.



- 88 -

averaging power should increase entailing an increase of the effective
permeability. Similarly, as the spatial continuity of the shales in the plane

perpendicular to flow increases, the power of averaging should decrease.

Such a measure of average continuity is a weighted average of the shale
indicator correlation for all distances & either in the direction of flow or
perpendicular to flow. The general form of such a statistic follows:

(Note: Appendix B contains a full development of this statistic.)

p(L) =3 N (k) (5.3)

with:
p(L ) = weighted shale indicator correlation..
L = length of the network in the direction of flow.
h; = separation vector in the grid network.
p(h; ) = correlogram of the shale indicator at lag h, .

A; = weights on the p(k; ), with 3\, = 1.
l

As p(L) increases the average spatial continuity in the direction of L
increases. An equal weighted average will be considered first denoted by a

subscript ew.

Figures 5.3 and 5.4 show, as expected, a positive correlation existed between
w and p,, (L) and a negative correlation between w and 7,,(S). However, a
great deal of scatter was observed. The corresponding median and quartiles of
the distribution of w within small classes of p,, are also shown. They allow a
fast visual appreciation of the amount of scatter. Presenting the results in this
manner is consistent with the ultimate objective of having parameters that can

predict an eflective w.

Although a clear relation between w and the two p’s appears, the overall
correlation is poor. The correlation between w and p,,, (L) is only 0.46, and the

correlation between w and p,,, (S) is -0.21. Recall however that traditionally the
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Figure 5.3: Power of Averaging (w) versus mean indicator
correlation ., (L). The scattergram of the effective power
average w vs. the mean indicator correlation 7,, (L ) for each of
the 4000 network simulations. In the right figure, the median,
1st and 3rd quartiles of the distribution of w conditioned over
classes of p,, (L) values are given. 7, (L) is the mean, equal
weighted, shale indicator correlation within the length L of
vertical flow. Note the positive correlation between w and the
statistic 7., (L ).
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effective vertical permeability is taken as the geometric average of the component
permeabilities which corresponds to an averaging power equal to zero. From
figures 5.3 and 5.4 the possibility of improving on this traditional approach can

be appreciated.

Upon a detailed look at the p(k;) component terms of the expression 5.3 it
was considered that w should be more correlated to the p(h; ) terms for small lags
h; see figure 5.14 pl1l. The influence, i.e., the weight X\;, was considered to
vanish beyond twice the indicator range. Indeed it has been found from network
simulations that the block effective permeability becomes independent of the
length of the block if that length exceeds double the variogram range (see figure
5.5). On the basis of these observations the following weighting system was

considered:

1. Y\ =1 (see equation 5.3).

2. X, decreases linearly to zero at twice the variogram range.

A complete development is given in appendix B (ref equations B.5 and B.7).

The equal weighted and unequal weighted p were calculated for the grid
networks. Figure 5.6 shows the averaging power versus the equal weighted
Pew(L) and the unequal weighted p(L ) The correlation between w and the
weighted p(L ) is 0.81, a substantial improvement over the correlation between w
and the unweighted p,,, (L ) found to be 0.64. Figure 5.7 shows that p(S) is not
very helpful for predicting the averaging power. For p(S) both cases yielded a

correlation of -0.2.

Various block sizes and degrees of discretization have been considered. In
each set of test runs the relationship between the averaging power and the
experimentally calculated indicator correlation have been observed. The

characteristics of the five test runs considered are given in table 5.1.
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Figure 5.5: The effective permeability versus field length in the
direction of flow for shale fractions of 0.36 and 0.64 (from Des-
barats, 1986). The indicator range of correlation in the direc-
tion of flow is 15m. The effective permeability changes very lit-
tle after 30m or twice the range of correlation.
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Figure 5.6: Power of Averaging (w) versus 7,, (L ) and B(L).

All the test cases presented in table 5.1 have been combined to
determine the median and quartiles of w based on small classes
of p(L). The 2500 effective w’s have been grouped per classes of
either p,,, (L) or p(L ). The resulting class medians for w were
all positive in one case, and negative for low P(L ) classes in the

other case.
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Figure 5.7: Power of Averaging (w) versus p(.5).

All the test data has been combined to determine the median
and quartiles of w based on small classes of 5(S). For a large
range of p(S), the averaging power appears quasi constant, a
result comparable to that shown in figure 5.4.
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Five Test Cases Considered
(all distances L are relative to the range of the variogram model)

(the discretization d gives the number of points within the variogram range)

Test Run L, d, L, dy L, d, size
Base Case I 0.8 7.5 0.8 7.5 1.5 6.7 6x6x10
1. Discretization II 0.8 6.3 0.8 6.3 1.5 6.7 5x5x10
2. Small Block 0.4 12.5 0.4 12.5 2.0 5.0 5x5x10
3. Large Block 2.0 2.5 2.0 2.5 2.0 5.0 5x5x10
4. Large Block II 3.0 1.7 3.0 1.7 3.0 3.3  5x5x10

Table 5.1: Characteristics of the test cases considered.

For each case 500 simulations have been performed. The effective
permeability (Ke), power of averaging (w), proportion of shale (p ), equal
weighted p,,, (L), unequal weighted p(L), equal weighted 7,,(S), and the

unequal weighted p(S) have been retrieved from each simulation.

Figure 5.8 shows the median lines for predicting omega on the basis of (L)
for all five test cases. On figure 5.9 the median lines for prediction of w by »(S)
are shown. The near horizontal nature of the median lines and the scatter
observed leaves little hope to use p(S) in confidently predicting w. A multiple
linear regression has been used to estimate w from both p(L) and p(S). The

inclusion of p(S) increases only marginally the correlation from 0.694 to 0.704.
In summary, the following observations can be made:
1. The power of averaging (w) appears independent of p (refer to figure 5.2).

2. The weighted p terms (ref. equations B.5 and B.7) are better correlated to w
than the equal weighted p,,, terms.
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Figure 5.8: Power of averaging (w) versus (L ).

Median lines for the four test runs and the base case are shown.
The median relates to the distribution of the effective power
average w within classes of p(L). Note the definite positive

correlation between w and (L ).
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W versus Rho(s) Base Run and Tests
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The averaging power w appears poorly related to 5(S).
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3. For the test cases considered the relationship between w and p(L ) depends

little on the block size or level of discretization, see figure 5.8.

4. A good approximation of w may be made from regression using only the
weighted p(L ). The statistic p(S) does not assist in predicting w except in

extreme situations with very high p(S).

Referring to figure 5.6 a piecewise linear model for the median line can be

adopted:
w == 6.0 p(L ) - 1.00, p(L)<0.17 (5.4)

w=09p(L)-013, p(L)>0.17

This relationship is for vertical flow and should not be used for horizontal
flow. Horizontal flow conditions (strong continuity of the shales in the flow
direction) would yield 2 higher p(L ) than is shown on the graph of figure 5.6. To
test this regression model the following cross validation was performed. For each
run the network effective permeability has been estimated first by the regressions
proposed above and second by the traditional geometric average. The mean and
variance of the relative error of estimation will give a measure of the bias and
accuracy of each method, see table 5.2. The relative error is defined as the true
network permeability minus the estimate divided by the true permeability. The
closer the mean relative error to zero the less biased the estimator. The lower the

variance of the relative errors the more accurate the estimator.
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Statistics of the Relative Error

Estimate mean variance  minimum maximum
1. Geometric Average -0.0093 62.29 -209.3 0.87
2. Power Average knowing p(L )  -0.0062 0.28 -12.7 0.92

Table 5.2: Relative error statistics using a geometric

average and the model proposed in equation 5.4.

The power averaging technique clearly outperforms the traditional geometric
averaging. The geometric average is unbiased but not accurate. The constant
power of averaging that would give exactly zero bias is w = -0.0125, a value

indeed very close to the geometric average.

Figure 5.10 shows a cross plot of the true and estimated block effective
permeability using successively a geometric average and a power average knowing
p(L). All the 2500 runs are pooled in these figures. The bias and accuracy
performance appears better for the power averaging technique. In practice the
statistics p(L ) need to be estimated. Estimation of a mean indicator correlation
is not a particularly difficult exercise, however the estimation would entail some
deviation (error) from the exact value p(L ) used in figure 5.10 entailing a poorer

performance than shown.
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Estimation of K, Based on p(L ) and SFP

The approach used in this section is different from that taken in the previous

section for the following reasons:

o Another geometrical simulation technique (the bombing model) is used to
create possible sandstone/shale indicator networks. This change allows
greater control over the geometry of the shale heterogeneities. With more
controlled geometry it is hoped that the influences of heterogeneity may be
observed more clearly. By filtering all the influences except a selected
number of controlled parameters, more definitive statements about
heterogeneity can be made. The bombing model also allows generation of

large networks with a minimum of computer time.

¢« A commercial flow simulator (Eclipse) has been used. The solution of the
finite difference flow equations is fully implicit in this simulator. The
previous in-house program treated pressure implicitly and saturation
explicitly. Another consideration for choosing Eclipse is that it allows two or

three phase flow studies.

« In addition to the weighted indicator correlation p(L ) measures of shortest
flow path (see appendix F) will be considered. If these new measures can be
inferred in practical circumstances they can be used to improve prediction of

block effective permeability.

For a 3-d network there are measures of flow path distance that can assist in
predicting the effective permeability. If one considers the sandstone as permeable
and the shale as impermeable, flow paths are defined as a continuous sequence of
sandstone indicators. From each starting point on the input face of a block there
is a shortest flow path to reach the opposing face in the direction of flow. The

corresponding array of shortest flow path measures relate to the eflective
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permeability of the block. An algorithm for calculating this shortest flow path
(SFP) array is given in appendix F.

Before proceeding further it is important to recall the ultimate objective of
this research. The goal is to develop measureable statistical parameters that can
be used to infer the correct averaging power. The information required to
calculate the measures of shortest flow path would rarely be available in practice

except from outcrop studies and/or geological inference.
Bombing Model:

The technique for simulating the random geometry of uncorrelatable shales
used in this section is the bombing model. This technique amounts to locate
randomly the centers of shale units in space by a Poisson process. A Poisson
process implies that the location of one particular center is independent from the
location of any other center. This assumption is not fully realistic but it will be

considered as a first approximation.

In this study ellipsoids of fixed geometry (axes: a, ,8y ,0, ) are considered.
The anisotropy may be set such that the ”shales” are extremely flat (e, /q,,
a, /ay very small). Some important comments about the simulation procedure

adopted:

1.  All ellipsoids are all the same size, however overlapping of the shale units

and truncation by the boundaries of the block cause the shapes to differ.
2. All ellipsoid major axes are in the 3 primary z,y,z directions.

3. The model is not as sophisticated, hence as realistic as the 2-d model
developed by Srivastava(1986). However, a 3-d model was required that
allows for a three dimensional continuity of the shales. A model that

"stacks” 2-d realizations was not considered appropriate.

4. This method was employed for the major part of this thesis rather than the

unconditional indicator simulation used by Desbarats(1986) because it
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imposes no grid size limitation and the geometry of the resulting shales is

better controlled.
Description of the Flow System:

A large 3-d rectangular block is discretized into elementary sub-blocks. The

permeability within each sub-block is assumed to be constant. Specifically:
e  The porosity is uniform and constant over the entire large block.

o  The absolute permeability of each sub-block is the same in the vertical and
horizontal directions. The software developed would allow for different
horizontal and vertical permeabilities, however this additional factor of

variability has not been investigated at this time.

»  The sub-block permeability has a binary distribution with spatial correlation

induced by the bombing model.

Figure 5.11 shows such a block discretized into 2000 sub-blocks (i.e.,
10x10x20). This level of discretization has been used in all simulation runs. Each
of the 2000 sub-blocks is filled with either shale or sandstone. Given a particular
realization of the sandstone/shale mixture the block effective absolute

permeability is then determined by running the flow simulation.

A waterflooding simulation has been used. For the block shown in figure 5.10

the following simulation parameters are used:

o« Rock Properties: Porosity and absolute permeability (¢ = 14.5%,
K,, = 1000md, K,, = 0.1md).

e Initial Condition: The reservoir block is 1009 water saturated. The relative
size of the block versus the size of heterogeneities is the important feature
while the absolute block size is not. However, the Eclipse simulator does

require a physical size. The size used is:
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d, =100 ft n, =20 L, = 2000 ft (flow direction))

d, =100 ft =n, =10 L, = 1000 ft

d, =20ft n, =10 L, =200 ft

4

e  Production Scheme: Water will be injected at a constant pressure at one end
of the reservoir. Fluid will be produced at constant pressure from the other
end of the block. The flow rate will be determined by the block effective

permeability.

e Injection: Water is injected into every sub-block on one end of the large
block. This is achieved by 10 vertical wells completed throughout each of
the 10 layers. Water is injected at constant bottom hole pressure (6500 psi
which is below the fracture pressure). The injection pressure decreases
linearly from the top of the well (due to gravity) so the average injection

pressure is:

Py, i = 6500 ~ effect of gravity

o Production: The reservoir is produced in every sub-block on the opposite end
of the large block. Again, 10 vertical wells produce at constant bottom hole
pressure (5000 psi which is above the bubble point). The average production

pressure must be corrected for gravity and is given by:

P, = 5000 - effect of gravity

When the pressure difference between the injection face and the production

face of the horizontal block is considered the gravity effect cancels out.

The flow system described above has been implemented on an Apollo DN660
computer system. The sandstone/shale network simulation was implemented and
interfaced with the flow simulation. Relevant Fortran77 subroutines are included

in Appendix G.
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The software allows the user to generate a 3-d sandstone/shale model with
the ellipsoidal shales located by the bombing model. The size of the ellipsoidal
shales and their volume proportion are set by the user. Every sandstone/shale
model is written to a file for direct input into the Eclipse flow simulator. Another
program takes the output from Eclipse and files the effective permeability,
averaging power, and the input statistics. Complete flexibility is allowed for input
size and anisotropy of the shales, proportion of shales, directional permeability of

the sandstone and shale within each sub-block (not used here). and so on.

This set of programs allows the investigation of flow in heterogeneous media

to be approached in a very systematic way. Some results are now presented.
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Some Results:

Shales of various sizes have been added to the grid network (see figure 5.11)
to simulate both horizontal and vertical flow. Horizontal flow corresponds to
shales elongated in the z direction while vertical flow is simulated by adding
shales elongated in the z direction. Two cases for horizontal flow, one case for
spherical shales, and two cases for vertical flow are considered. Each test cases
has been tested with 12% and 25% shale. Twenty realizations of each case (10
for each shale fraction) were run. A total of 20x5=100 network realizations were

thus considered. A summary of the results are shown in table 5.3.

Summary of Test Cases

No. Description Size of Shales Proportion of Averaging Power
X y z shale mean s.d.
la  Horz. flow 5 3 1 12.5 0.738 0.024
1b  Horz. flow 5 3 1 22.5 0.713 0.020
" 2a Horz.flow 9 5 3 12.5 0.696 0.043
2b  Horz. flow 9 5 3 22.5 0.665 0.053
3a  Spherical 3 3 3 12.5 0.422 0.017
3b  Spherical 3 3 3 22.5 0.417 0.021
4a  Vert. flow 1 3 5 12.5 0.341 0.028
4b  Vert. flow 1 3 5 22.5 0.328 0.027
5a  Vert. flow 3 5 9 12.5 0.246 0.050
5b  Vert. flow 3 5 9 22.5 0.179 0.042

Table 5.3: Description of test cases.
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Some Remarks:

o  The important parameter that determines the averaging power seems to be
the geometry of the shales. This can be observed in figure 5.12 where the
averaging power for each run is plotted, and increasing from run 5b to run

1a.

o  The results are consistent with those observed in the first phase of research
i.e., the averaging power for vertical flow is around 0.2 and for horizontal

flow around 0.7.

The two different measures for the spatial arrangement of the shale indicator
grid (i.e., the indicator correlation p(L ) and the shortest flow path measures) will

now be considered for the test cases of table 5.3.
1. Shale Indicator Correlation:

In the sandstone/shale networks considered here the indicator correlation is
induced solely by the size of the shales since the shale centers are Poisson located.
The variogram for an indicator field of this type is developed analytically in
appendix E. The indicator correlogram essentially does not depend on the
proportion of shale. Figure 5.13 shows the correlogram (in the z direction) for
runs la and 1b. The average correlogram corresponding to all 10 realizations is
shown. The range of correlation is clearly found to be the size of the shales (i.e,
the dimension of the ellipsoids). Appendix E contains an analytical development
for the variogram (and correlogram) of Poisson located ellipsoids. The
correlograms for the other runs have been computed and show similar matching

results.

It is interesting to study how the experimental average indicator correlation
p(L ) is related to the averaging power. In the first phase of research it was noted
that the averaging power was highly correlated to the correlogram values for

short lags. This is shown to be the case on figure 5.14. All 200 runs have been
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power as the shales become less continuous in the direction of
flow (horizontal vs. vertical flow).
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Figure 5.13: Mean indicator correlogram for runs la and 1b
(see table 5.3). The correlograms for the z direction are shown.
The range of correlation is the same as the length of the shales
in the z direction (i.e. 5).
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Figure 5.14: Plot of the correlation between w and the p(k)

values for various lag distances (k). The correlation is the best
for small A and decreases linearly to zero around 8. This led to

the weighting system for B(L ).
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pooled for this figure.

If the indicator correlation structure could be inferred then the averaging
power can be predicted reasonably well. The indicator variogram range and
anisotropy are more important than the details of the correlation structure. The
practical emphasis should then be directed toward determining the range and
anisotropy of the shales. With this information the averaging power could be

determined very closely.
1. Shortest Flow Path Statistics:

Although less accessible the shortest low path (SFP) statistic should provide
a much richer information about the flow properties of heterogeneous media and
should be highly correlated to the averaging power w. However, establishing the
relationship between the SFP statistics and w is not an easy task for the

following reasons:

1. The SFP parameters are no longer independent of the proportion of shale.
The volume fraction of shale will have a strong non-linear influence on the

statistics of shortest flow path.

2. For a particular realization the averaging power should be highly dependent
on the proportion of flow paths that are unobstructed. However, this
proportion is not independent of the block size. As the block size increases
for a constant shale size and volume proportion of shale there is a greater
chance of hitting a shale obstacle. Thus, the proportion of shortest flow

paths will decrease.

3. Not only the proportion of unobstructed flow paths must be accounted for
but also their spatial arrangement. If the very short paths are clustered
then there is essentially a channel for flow. If the paths are dispersed then

the flow is, in general, more tortuous resulting in a lower K,.
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For these reasons the SFP statistics have not been considered in this thesis.
The essential point of this research is to develop parameters that can be
measured in real practice.

To conclude this phase of research: the averaging power is found to depend
on the size and anisotropy of the shales (see figure 5.12). The averaging is also
slightly dependent on the proportion of shale. A method to estimate the block

effective permeability in a real situation can now be presented.
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Chapter 6

Conclusions and Recommendations

A Procedure to Estimate Effective Absolute Permeability

A procedure can now be suggested to calculate the block permeability values
that are required for reservoir simulators. The procedure outlined below is based

on the experiments documented in this thesis.

The important question that should be kept in mind while reviewing this
section is: On the basis of sparse core data, tmprecise well logs, and possibly a
geological interpretation - how much can be inferred about the spatial distribution

of heterogeneities away from the well bore area?

If only the proportion of shale, the depositional environment, and the
principal direction of sedimentation can be inferred - a power average approach
to estimate effective absolute permeability is relevant. Other techniques which
require more information (such as assumptions about how the shales are
distributed...) should be reserved for situations where this information is

available.
The following step by step procedure could be used in practice.

1. Infer the proportion of shale correctly everywhere. This will involve a good
well log analysis that does not ignore small scale shales that may not be
picked up by the gamma log. Beyond the well locations the proportion of
shale can be estimated using either a conditional simulation (which will

provide the ”least smooth” estimate) or kriging.
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2. Assign absolute permeabilities to the shale and sandstone. If more than one
type of sandstone (or shale) is present the proportion of each component
must be inferred in each block as well as the permeability of each
component. It is important to note that assuming a binary or n-ary
distribution for the permeability even when there is some mixing (spread

about the modes) is not unrealistic and provides virtually identical results.

3. On the basis of the information available a power average can be applied. If
enough information is available to perform flow simulations as was done in
chapter 5 then this should be done. Otherwise, expert judgement or some
previous data (from a nearby reservoir or same depositional environment)
can be used. Averaging powers would have to be calculated on a case-by-

case basis but the following approximations could only improve the estimate:

Power Averaging

Continuity Continuity wy, w,
Horz Vert (Horizontal) (Vertical)
Good Poor 0.80 0.10
Average Poor 0.70 0.15
Poor Average 0.60 0.20
Poor Good 0.50 0.25

Table 6.1: Some First Estimates of Averaging Powers.

This information has all the character of the qualitative information usually
presented by geologists to engineers. However, in estimating the non-linear nature
of averaging there is currently no experience that will quantify the property any

better.
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Conclusions

The following preliminary conclusions can be made regarding the scale

averaging of absolute permeability.

A simulated reservoir model (¢, K;,,, , K,.,; ) Was used to assess the impact
that scale averaging of absolute permeability has on waterflooding performance.
The oil production rate and cumulative oil production were found not to be
sensitive to the averaging process used. This is due to the initial unimodal
distribution of permeability and the reservoir production practice considered. The
injection and production rates were fixed while alternate averaging processes were
used to generate the absolute permeability data for the reservoir simulator. The
fixed total flow rate and the unchanging relative permeability curves caused the
measured forecasting variables to be insensitive to the absolute permeability.

The sensitive variable was the well pressures and not the flowrates.

It has been shown that if the distribution of permeability is unimodal (ex.
lognormal) the block averaged permeability will not be sensitive to the averaging
process. The distribution of permeability within homogeneous rock types (ex
sandstone) will be unimodal but the distribution of permeability for two
component mixtures of sandstone and shale will be bimodal at the scale of
measurement. A binary approximation to this bimodal distribution is relevant

given the two component aspect of the problem.

Permeability from this binary distribution is averaged into block eflective
permeabilities. The non-linear averaging process has been modeled as a power
average. A power average amounts to transform the data by a power
transformation, arithmetically average” the transformed data, and then back
transform this arithmetic average. This process allows a mapping of the problem
of determining the effective absolute permeability to that of determining an
averaging power that will identify the effective permeability. The averaging

power is then estimated from characteristics of the shales spatial distribution.
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The two limiting physical situations are when the shales are aligned perfectly in
the direction of flow which leads to an arithmetic average {(w = 1), and when the
shales are perfectly aligned opposing flow which leads to a harmonic average
(w = -1). The spatial arrangement of the shales can be inferred from well logs,
outcrop data, and possibly from well tests. This information can be used to

establish an averaging power that will give an estimate of the block permeability.

The statistical parameter that has been found to predict the averaging
power accurately is the indicator correlogram describing the sandstone/shale
transitions in the flow direction. More specifically a single parameter, a weighted
average of the indicator correlogram values for different distances, can be used.
The correlation at short distances is found to influence the averaging power more

than the correlation at large distances.
Recommendations for Future Work

No research topic is ever closed and there are many avenues of research that
relate to the topic of this thesis. Some of the more interesting and practical

aspects of future work include:

1. The technique proposed to estimate the effective absolute permeability (I, )

needs practical validation.

2. The multimodal assumption for the permeability distribution in a
heterogeneous media is certainly valid but a collection of permeability

distributions from actual data would help support this assumption.

3. A systematic study relating the size of shales, the anisotropy, and the block
size could be performed. Only a limited number of tests have been presented
here. The statistical parameters of interest could be refined if such a study

were to be carried out.

4. The structure of common depositional environments could be studied closely

and the features that characterize such environments could be used to
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predict appropriate averaging schemes. This would be in line with the

approach of Weber(1982).

5. The fluid flow in an oil reservoir is multiphase and this work would have to
extend to multiphase flow to be fully applicable in the petroleum industry.
There are immediate applications in the field of hydrology and whenever
single phase flow is considered. The problems of relative permeability and

capillary pressure have yet to be tackled for a truly heterogeneous system.

Certain key aspects of fluid flow in heterogeneous media, must always be
kept in mind. The three dimensional aspect of flow studies should be maintained
because flow in the ground is inevitably three dimensional and translating results
from two dimensions to three dimensions is not a straightforward task. The true
aspect of heterogeneity is the presence of two or more rock populations
(sandstone/shale or matrix/fractures) and the distribution of flow properties in
such a medium is not continuous, hence is not likely to be well described by

unimodal, small variance, statistical distribution models.
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Appendix A: Normal Approximation to the Binomial

Distribution - Application to Power Averaging

In chapter 4 it was shown that under certain conditions the cumulative
distribution function (cdf) for block averaged permeabilities could be
approximated by a binomial distribution with the permeability scale depending
on the averaging power. Each binomial probability corresponds to a specific
volume fraction of shale. If the averaging is to be performed over blocks
composed of n units there are n +1 possible fractions of shale. There could be
7=0,1,2,3,....,n units of shale in a block containing n units. The proportion of
shale p; is binomially distributed with an average volume fraction of shale p. If
n becomes large this binomial distribution can be approximated by a normal
distribution. The transform from the specific proportion of shale pj to the
permeability is made through a power average. i.e.

1
K, = [p;Kd + (op, ) K8 | (A1)

where:
K, >0
J = 0,1,2,...,n = the number of shale units in the block.

KeJ = effective permeability of the block given j shale units.

pj = J = the fractional volume of shale.
n

w = the averaging power.

Knowing that p j is binomially distributed we would like to know the
distribution of K, given an averaging power w. With n, I, , K,,, and w known

the distribution of K, may be determined.

F(k)= Prob(K, < k)= F,(k), for w>0
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= Fy(k), for w<O

Case 1:

w > 0, where k£ is an increasing function of k:
Fi(k)= Prob{K,” < k“} (A.2)
= Prob {p; [K,{' - K, + K,» < k)

kY - K K.Y — kv
= Prob {pj > ” " " © r }
I.sh "’Kss Kss '“Ish

= Prob{j > n-r}

with r being the relative argument.

It is known that j follows a binomial distribution given n and p and that the
mean of this random variable is n-p, and its variance is: n -p (1-p ). Considering
the normal approximation to the binomial the distribution F (k) may now be
written in terms of the standard normal cdf:

Y _ n'r-n‘p
Pk =1-6 7==5 Tm]

=1-G M .
' p-(1-p) 49

Where G is the standard normal cdf.
Case 2: w<0, where k“ is a decreasing function of k:
Fo(k) = Prob {K,* > k¥} (A4)
= Prob {p; [K,{ - K,;’] + K.,* > k“}

K.Y - kv
=Pr0b{p1 < m:f
88 s
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= Prob{j<nr}l=G i A.
{7<n-r} —) (A-3)

The cdf takes a different form for negative averaging powers because K., is
greater than K,J for w<0. Regardless of the averaging power, p; is binomially
distributed and the distribution may be approximated by a normal distribution
for large n. As shown above the actual expression for the cdf does change for
w<0.

With equations A.3 and A.5 it is possible to compute the cdf of a block
average permeability given the required information noted above and assuming

that the various hypotheses discussed in chapter four are valid.
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Appendix B: Calculation of Continuity Parameters (p(L)):

To assist in predicting the averaging process for permeability some
parameters must be devised to capture the spatial arrangement of the shale
heterogeneities. Large scale shales will be handled deterministically in the finite
difference grid model but the small scale shales can not. The spatial continuity
and connectivity of the low permeability zones(shales) and high permeability
zones (clean well-sorted sandstone) along with an estimate of the proportion of
each component may be used to predict the effective permeability of large scale
grid blocks. The continuity parameters derived hereafter are based on a binary

model for the permeability field.

The proposed parameter p(L ) may be calculated experimentally, given an
indicator grid and an estimate of the range of the variogram defined over the
larger stationary volume. Directional variograms are required to provide a range

of correlation in each of the coordinate directions.

The spatial variance of I(z) along a length L representing the dimension of
the block in one of the coordinate directions may be written. Consider L in the

coordinate direction z (ref. Journel and Huijbregts (1978) pp 67):

1 t=n, j=n,

7 2 2 ulz -z)) (B.1)

n,” i=1 j=1

:Y.I(L’L)z

The ergodic limit of this spatial variance is the variance of I(z)ie. p(1-p). To
obtain a measure of spatial continuity the influence of the proportion of shale
should be filtered. By standardizing :;1 (L,L) to its ergodic limit, the following
continuity factor can be defined:

v (L,L)
p(l-p) ’

This is the average shale indicator correlogram along the flow length L (hence

Pew(L)=1- € [0,1] (B.2)

the p notation). The subscript ew implies that the average correlogram is equal
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weighted for all lag distances. As the continuity of the shales in a particular
direction increases the p,, (L) will get closer to its upper limit (1.0), as the
continuity of the shales in a direction becomes very low, or the block becomes

very large, p,,, (L ) will approach its lower limit (0.0).

It is desirable to have a measure of continuity that may be used for any size
block. In the work that is done here all the block dimensions are relative to the
variogram range. As the dimension of the block becomes large (i.e., greater than
the variogram range) p,, (L) will asymptotically approach zero. The lack of
correlation at large distances will dominate the calculation of p,, (L ) regardless

of the short scale variogram structure.

What seems intuitively reasonable and is indeed the case, is that the
correlation at small distances will be more important than the correlation at long
distances. So in a situation where an experimental or actual measure of the
spatial continuity is to be calculated a better estimate of p(L ) would be weighted
such that the short scale structure has more influence. For each lag distance by,
in a particular coordinate direction, the average correlogram is defined as p(k; ).
The average correlogram is calculated for each coordinate direction
independently. The following elaboration will assume the coordinate direction z .

The derivation for other coordinate directions is easily made.

The vector h; is a vector in one of the three coordinate directions (i.e., z)
with a magnitude equal to an integer multiple of d; (ref. figure 5.1), that is:
hy = n-d; , n = integer<n,.

The average correlogram for each lag distance is determined by centering the
non-centered covariance and normalizing to its ergodic limit. FEach

p(h;), 1=0, .... n,-1,is given by:

A(h)-p?
P(h1)=p—(.(i)_—p%— (B.3)
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where A (h;) is the non-centered covariance given by:
t=n, j=nk=n,-l

Ahy)= ——— > 2 > Iz ’y]’zk)l(m ’y1’2k+l) (B.4)
Ny Ny Nz =1 j=1 k=1

A weighted sum of each p(h; ) with appropriately chosen weights would have
the properties that are desired. A weighted sum is written:

l=n,-1 l=n,-1

AL)= 3 XNok), ¥ N=1 (B.5)
1'=0 =0

An equal weighted average equal to that given in equation B.2 would result if

each A\; is set to

ng

It is considered that after double the variogram range the block eflective
permeability will not depend on the underlying variogram. This was shown in
experiments performed by A.J. Desbarats (1986). This was also verified through
experimentation documented in chapter 5. If we impose the condition that
beyond two times the variogram range all the weights are set to zero, and that
the weighting function will decrease linearly to zero at this point, the following

weights may be assigned:

N o=by-boh allh <2a

a = variogram range (B.6)
l=n,-1
by, by = constants chosen such that 37 X\, =1
=0

)\1=0, hl > 2a

This system of weights is more justified than the unweighted average that is
implicitly assumed in equation B.2. In actual network simulations it has been
observed that the correlations p(k;) at small lags & are more influential that

those at larger lags. Also the weighted p(L ) may be used to predict the power of
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averaging more precisely than the unweighted p,,, (L ).

A measure of the spatial continuity of I(z) in the plane perpendicular to
flow may be similarly calculated. The plane perpendicular to flow will be denoted
S. If the flow is vertical (z-direction) the x-y plane will be S. If horizontal flow

(in the x-direction) is being considered S will be the y-z plane.

In the numerical modelling of the fluid flow there is no flow in any diagonal
directions (except stepwise). For this reason the calculation of p(S) is essentially
a sum of the p in the two directions defining S. If one was considering vertical

flow (S is the z -y plane):

l=n,-1 _ I=n,-1. _

pS)=a Y, N o)+ 1-a) 3 N p(hyy ,with: (B.7)
1 =0 =0

l=n,-1 l=n,-1.

o My = Y N =10 ,and:
=0 =0
L,
TILvIL,

The weights X' ; and ):1 are determined in an identical fashion to \; given
in equation B.6. The expected variogram range in the x and y directions need not
be the same. The weight « is introduced to correct for unequal L, and L,. It is
important to note that if either L, or L, is greater than two times the variogram
range they should be reset to 2-a for the calculation of a. This is equivalent to
calculating p(S) by summing the contributing p(k; ) for all lags k; in the z and y

directions.

The p terms defined above may be calculated for any realization of an
indicator grid where the underlying variogram is known or can be estimated.
These terms do not capture all the information possible if detailed ”real” small
scale information is available. However, in practice it will not be possible to have

information that can characterize a sand/shale sequence more accurately than
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these summary bivariate statistics.

If a variogram model and a block size is provided or alternately if a shale
geometry is provided the p terms may be analytically derived. It should be
emphasized here that the p terms are intended to estimate the averaging power
for a particular realization of an indicator grid and not for the general case of a
known shale indicator variogram or the specific case of a known shale geometry.
However, it is illuminating to briefly consider the development of p for these two
cases. It may be possible to describe a particular reality by one of these ideal
situations. Or, if no other knowledge is available the estimated indicator

variogram may be the only information available.

The p terms are developed for an exponential variogram and for ellipsoidal
shales (bombing model) in appendices C and D. The connection between
experimentally calculated p terms and the averaging power is covered fully in

chapter 5.
Inference of Continuity Parameters

Up until this point the inference of actual » values has not been discussed.
The basic requirement to infer the p terms is an indicator variogram model. If

experimental or actual p terms are to be determined more information is required.

The most accurate and reliable way to infer an indicator variogram model is
to have data at a reasonable scale. The scale and spacing of the data would have
to be less than the range of correlation. A variogram inferred from an outcrop in
the central Sahara (ref. Desbarats, 1986 quoted by Haldorsen et.al. 1985) was
fitted by an exponential model with a 15 m range of correlation in the horizontal

direction of the outcrop and a 1 m range of correlation in the vertical direction.

Outcrop data would provide the most direct means to determine appropriate
variogram models. Close to some oil fields there may be outcroppings of the same
sedimentary units. In northern Alberta (Canada) there is mining of oil sands

which provides direct access to the sedimentary structure of oil bearing strata
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similar to those of nearby oil fields. It is known that some of these structures
contain shale. In any case, a catalog of variograms for specific depositional
environments may be constructed. The appropriate variogram can then be

selected on this basis if other information is not available.

Well logs would provide the vertical variograms. On the basis of the gamma
ray, S.P., or more recently lithology logging (P, ), the down hole shale indicator
variogram could be inferred. More precisely the p(L ) in the vertical direction
could be calculated. This would provide a method to estimate the averaging
process for vertical permeability from well logging. Depending on the direction of

the drill hole the averaging process in other directions may also be estimated.
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Appendix C: Development of  for an Exponential Variogram:

Given a variogram model and a block of fixed dimensions it is possible to

calculate p(L ) and p(S) analytically. This has been done for the exponential

-3h

a

variogram model with no nugget effect: v(h) =1 - ¢ , with practical range

a.

Having determined the mathematical expression for the weighting function
X(% ) (see equation B.6) and knowing the correlogram function for the exponential

variogram we may write p(L ) as a function of the practical range and the block

size:
L 1.0 -3-h
pL)=[ - — | (2a -h)e * dh, L<a (C.1)
0l2a-L - L
2
The solution obtained:
_ ) L b
p(L)= 7 7 54+ (3=-5) ¢ (C.2)
a
36(‘;)—9(7)2

This function is plotted on figure C.1.

The testing and implementation was carried out on realizations of indicator
networks. The regression developed to predict w by p(L) (see chapter 6) is
statistical in nature and will not accomodate each particular realization. Thus, if
a particular realization is envisaged the p(L ) that corresponds to the particular

case should be used and the exponential model defined above should not be used.
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Rho(L) versus L/c - Dimensioniess block length

1 LU L I LA L L I L LI L ! LR L
[ -
- -
005 - —
= -
- -
4] | S T OO O T 2 N O | J 1.5 ¢ 1 .t 1 11 l S N T T T I | I & U IS U I T S I I 1
0 0.5 1 1.5 2

Dimensioniess block tength (L/a)

Figure C.1: 5(L ) versus Dimensionless Block Length (L/a) for an
exponential variogram model of range a.
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Appendix D: Development of 5(L) for
Poisson Located Ellipsoids

If ellipsoids of fixed geometry (axes: az ,ay ,0,; semiaxes: 1, ,ry,rz) are
located in space by a Poisson process it is possible to analytically derive the form
of the shale indicator variogram and the weighted indicator correlation in any

direction.

This will provide insight as to how the indicator correlation and thus the
power of averaging relate to the ellipsoidal geometry of the shales. It is important
to note that the initial study on power averaging was carried out using stochastic
shales that do not neccesarily have an ellipsoidal shape. Although, the geometric

anisotropy used would tend to create shale bodies in with this shape.

Appendix E shows the derivation of the indicator variogram for spheres
placed by a Poisson process in a random media. It has been shown (Srivastava,
1985) that the indicator variogram for an indicator field generated by this process
is given by:

(k') =py(1-p it (D.1)
where:

v (k' ) = indicator variogram of I(z).

p; = 1-p = volume fraction of sandstone.

h' = lag distance in a given direction (vector distance).

al

= diameter of the imbedded spheres.
Sph (k' ) = spherical variogram function
3
3K 1 [ h!
—_ h [ !
20" z|d ] ’ <¢

=1, h' >a'

To account for the presence of ellipsoids (not spheres) it is necessary to

correct for the geometric anisotropy. A standardized range and lag measurement



- 136 -

may be used:

a==a,

: a ‘ a <
h=\/h;’+ [hy—’i-} + [hz z J (D.3)
a, a,

This is equivalent to transforming the ellipsoids into spheres.

The variogram and correlogram may be written as functions of the ¢ and A

given above:

vr(h)=p,(1 - p{()) (D.4)
Sph(h) _
P1 P
A= (D.5)

The complete bivariate statistics of an indicator field generated by ellipsoidal
shales in a sandstone matrix are now known. The proposed continuity factor
p(L) may be calculated. The calculation of p(L ) may be written as an integral

(i.e., assume infinite discretization):
L
AL)=[A\R)o(h)dh , L<2a (D.6)
0

The weighting function A\(k) is a linear weighting of p(k) that decreases with

increasing A to become nought at 2-a and beyond:
Mh)=1b - c-h ,where: (D.7)

b and ¢ = constants
h = lag distance
The conditions on A\(k ) may be written:

L
[A\h)h =1, L<2a and (D.8)
4]

Mh)=0ath = 2a
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For these conditions the constants & and ¢ are found to be:

2-a

L2
2. L o
¢ 2

Substituting into equation D.4 the following analytical expression for p(L) is

found:

L
oy 1 ol
p(L)—£ 77 |2 h)[

2a-L — —
2

The author being reluctant to perform the integration required to obtain a closed

form solution has solved the integral for various I and a values on a computer.

A plot of p(L ) versus the dimensionless block length L is shown on figure D.1.
a

Remarks:

1. The p(L ) continuity term used is now a function of the volume fraction of
shale in the mixture. This was not suspected from the previous work.
However, the dependence of p(L) on p is very small, the form of the
solution is identical for all p. Figure D.1 corresponds to p =0.2 with (L)
reaching a minimum of 0.312. Other runs were made with different
proportions of shale, at p =0.1 the minimum would be 0.319, or if p =0.3
the minimum would have been 0.305. This does not have an effect on the
results presented in this study, although this result may be interesting for

other more detailed studies.

2. In theory, the correlation does not change beyond the variogram range. In
practice the observed correlation up to double the underlying variogram

range is found to be important. This is why the weighting scheme is set up
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Figure D.1: p(L ) versus dimensionless block length % for ellip-

soidal shales. Length of Block =L . Axis of ellipsoid in direction
(L)=ga.
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to decrease to nought at double the variogram range. With the weighting

system used the theoretical p(L ) will change between the range and double

the range.
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Appendix E: Variogram Model for Poisson Located Ellipsoids

This presentation is extracted from an internal note by R. Mohan Srivastava
(November, 1985). The 3-d bombing model is a process where spheres of equal
radius r and diameter « have their centers located in space randomly according
to a Poisson process. In this development an indicator I(z) will be defined as 0 if
the point falls inside a sphere and 1 if it falls outside. The variogram may be

written:
A(k) = C(0)~ C(h)
= pi(1-p,) - O(h)

where p, is the probability that the indicator at a point is 1 (i.e. the volume

fraction outside the spheres). The covariance function is defined as follows:
Chy=FE[I(z)I(z+h)]-p?
A} =ps(1-p) - (E[I(z)I(z+h)] - p?)
=p1-E[I(z)I(z+h)]
There are only four outcomes of I(z) and I'(z +4):
I(z)=0, I(z+h)=0
I(z)=0, I(z+h) =1
I(z)=1, I(z+h) =0
I(z)=1, I(z+h) =1

Only the last of these will produce a non-zero product, and its product is always

1, therefore:
E[I{z)I(z+h)] = pu(h)
where py; is the probability that both I(z) and I(z +h) equal 1.

'7(’1):?1‘?11(”)
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If spheres with radius r have their centers laid down according to a Poisson
process in a volume V, then the number of spheres can be calculated from the
volume fraction that the spheres span. The number of centers falling in a volume

v follows a Poisson distribution with parameter av, where

The probability that both indicators are 1 is then
pu(h) = Prob [I(z)=1MI(z +k )=1]
= Prob[I(z)=1 | I(z+h)=1]-Prob[I(z +h)=1]
= pyProb[I(z)=1 | I(z+h)=1]

For h>a, I(z) and I(z+h) are independent and p (k) =p 2.
For k <a,
Prob [I(z)=1 | I(z+h)=1] = Prob [no centers ezist in V(z NV (z+k))]

= ¢—9v(h)

Where v (k) is the shaded region on figure E.1.

3
v(h)=mrZh - Th”
12
pu=pye®

In 8
PL (rp2y - XA2
2 yrs 12
3
pie
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= p;pit®)

where Sph(h) is the spherical variogram function.

The variogram model can now be written as:
M) =pi-pf = pi(1-p)) for h >a

=p1-pulk) for h <a

=py- Px'l’igph(h)
== Px(l - Pigph(h))

The variogram model expressed above is in a form similar to the familiar
p(1-p) with the exponent simply the spherical variogram model. This form
suggests what the corresponding variograms should be for analagous processes in
different dimensions. In 1D the exponent becomes a linear variogram up to the
range a; in 2D the exponent becomes the circular variogram. In any dimension
the exponent should be the corresponding hyperspherical variogram function.
This model is used in chapter 4 of this thesis where different continuity

parameters are calculated for ellipsoids.

It should be noted that the variogram is asymmetric (i.e. The variogram of

the pores is not the same as the variogram of the spheres.
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Appendix F: Shortest Flow Path (SFP) Statistics

Within a three dimensional sandstone/shale sequence the eflective
permeability is determined by the available paths in sandstone for the fluid to
move through the sequence. Some statistics that attempt to capture this
information should be very helpful in predicting the block effective permeability.
In practice these statistics will be more difficult to infer than the indicator
correlation discussed previously but may be calculated on the basis of a digitized
geologic drawing or geometric simulation results. Starting from any fixed point on
the face of the 3-d block, which the fluid element is to pass through, there is a
shortest distance to reach the opposing face. This distance may be calculated for

any specific point on the input face of the reservoir block.

So, a 2-d array of ”shortest flow path” measures is available. There are
certain summaries of this array that may be useful in predicting flow properties.

Some evident summaries include:

1. An unobstructed flow path is a path where the fluid element can move from
one end of the block to the other without being diverted around a shale
obstacle. The proportion of the 2-d array of shortest flow path measures that

are unobstructed is a useful summary.

2. Some of the flow paths will be infinite because they have no way to reach
the other side of the block within the sandstone. The proportion of infinite

flow paths is another useful summary.

3. The clustering of shortest flow paths - creating channels for flow. It should
be possible to determine a critical flow length beyond which the fluid path is
too tortuous. The clustering of shortest flow paths that are less than this
critical length may be described by a correlogram of an indicator which is

created on the basis of this critical flow path length.
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Calculation Procedure:

Given a 3-d rectangular network that is filled with either sandstone or shale
the goal is to compute the shortest flow path that a fluid element must take to
get from a fixed point on one face to any point on the other face. Certain

assumptions are required:

1. The fluid element must begin in sandstone. If a starting point is in shale the

starting point must be moved.

2. The shortest unobstructed flow path will be a path directly from the
starting point to an opposite point on the other end, hence of length equal to
the length of the block in the flow direction. If a shale obstacle is reached

the fluid must move (in sandstone) around the object.

3. If the fluid element can no longer go forward or in any perpendicular

direction the flow path is assigned an infinite value.

It is easy to see that the process described above may not always return the
shortest flow path. The decision of which direction to take when a shale is
reached may affect what happens in the next step. If the network is large the
effect of such previous decisions is very important. At the limit there are almost
an infinite number of paths that may be taken but there is only one shortest
distance. This shortest distance can be approximated by considering (sampling)
several flow paths. On the basis of some experimentation the following algorithm
was retained to obtain the "shortest” flow path with a reasonable probability of
success in all cases (begin with SFP=0)

Note: a flow chart is shown on figure F.1.

1. Begin in sandstone or move vertically away from the starting point if it is in
shale (SFP=SFP+1). The restriction to a vertical movement is a physical
constraint of the particular flow simulation used. The fluid is injected
through vertical wells and the fluid is assumed to enter the system through a

vertical column.
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One Flow Distance Calculation

)

Begin in Sandstone ?
no

yes

Move vertically up or down to
find sandstone starting point.

(note A, B).

|

yes

Update position.

Move forward to
yes Sandstone?

Reached end?
no

Return flow
distance.

Update position.

yes

NOTE:

no

Move up, down, left, or right without:
1. Moving back to a previously
visited location.
2. Going into shale.

3. Leaving the block.
?

<

/ Is there an alternative

start?

)

no

no

4

Return infinite
flow path.

Return infinite
flow path.

A. If there are multiple possibilities for movement the ties are
broken randomly.

B. Consider a vertical well bore connecting the blocks.

Figure F.1: Flowchart showing the procedure to calculate the
shortest flow path starting from any point on the end of a 3-d in-
dicator grid.
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2. Try to move forward in sandstone. If the path is blocked, try to move in a
perpendicular direction, as long as the move will not place the current
position in a sub-block that has been previously passed through. If more
than one alternative site is available, break the tie by drawing a random
number. If there are no possible moves - return an infinite flow path.

Otherwise, move(SFP=SFP+1) and go back to the start of step two.

3. This procedure will return either a flow path distance (possibly not minimal)

or an infinite flow distance.

4. This procedure can be repeated with different random number seeds as many
times as required. Repeating the procedure with a different random number
seed causes the breaking of ties to be done differently. If this is repeated
enough times the minimum distance found will likely be the true shortest

distance.

There are certain geometries of shale obstructions for which this algorithm
will not return a finite flow path even though one may exist. The fluid element is
not capable of looking more than one step ahead and fore-seeing a trap. One can
imagine a situation where a shale ié reached and no perpendicular direction is
available but if the fluid element had moved prior to reaching the shale it would
have succeeded to reach the opposite face. This is a rare case for the situations
that will be considered here. This is due to the low proportion of shale typically
present and the simulation of ellipsoidal shales rather than a convoluted

geometry that may create traps more readily.

The remaining question is: How many calculations are sufficient to obtain
reasonable estimates of the shortest flow path? To test the method a difficult
test case has been selected. The test case is difficult due to the alignment of the
shales perpendicular to the direction of flow and the high volume fraction of

shale. The test grid network has the following properties:
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1. 20 nodes in the flow direction, 10 nodes in each perpendicular direction for a

total of 2000 nodes.
2. 35% of the blocks are shale.
3. A very large number of alternative paths are thus possible.

Given such a difficult test network documented above, the SFP calculation
has been made. The 35% shale have been placed to simulate vertical flow (i.e.,

the maximum continuity is in the two directions perpendicular to flow).

There are 100 possible starting points for the flow calculation. At each of
these starting points the flow calculation must be performed a number of times so
that the shortest flow path can be found or reasonably approximated. The
shortest flow path for a node is the minimum flow path for all the attempts from

that node.

With the network used as a test there are a number of starting nodes that
do not have a finite flow path. If not enough attempts are made this proportion
will be overestimated. Figure F.2 shows the proportion of non-infinite flow paths
versus the number of attempts made from each node. The solution appears stable
after 100 iterations. The calculations for a certain number of attempts has been
made independently of the others, i.e., the result for 51 iterations is not the result

for 50 iterations plus one additional iteration.

It is not only important to estimate the proportion of non-infinite flow paths.
The calculated flow distance for the finite flow paths should also be the true
shortest. Figure F.3 shows the average flow distance (non-infinite paths only)
versus the number of attempts from each starting node. This average should
reach a minimum as each of the shortest flow paths is found correctly. This result

also appears stable after 100 iterations.

This test case is more difficult than the cases considered in practice (see

chapter 5), so it is evident a reliable calculation of the SFP statistics can be made



ty fiow paths

ini

Non-inf

100

80

[92]
o

40 |

c0

- 149 -

Number of Non-infinity Flow Paths

-

-

IIIIIIIIIIII]IIllll'llflllll]l]lll]l-l\ll]

l!lllllllllllllIlllJJJlllllJlJlllJllllll

0

50 100 150 200 250 300 350

Number of Iterotions
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ried out on the same network independently of the other trials.
The calculation is stable after 100 iterations.
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the number of iterations used to find the shortest flow path (1 to
400). Only the non-infinite flow paths are averaged.
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is a suitably large number of iterations is used (i.e., 100).

The problem with the measurement of the shortest flow path statistics as
discussed here is that a model for the sandstone/shale network is necessary. How
could such a model be obtained? If a simulation program (ex. bombing model) is
used the output is only as good as the data that is input into the simulation
program. The only direct way to inform such a model is through outcrop data or
through extrapolation from other sedimentary formations. In many respects these
SFP statistics are too rich for the task at hand. These statistics are discussed

more in chapter 5.
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Appendix G: Fortran77 Subroutines

Various computerized schemes have been used in this thesis. Often in

practice more time is spent on developing good working programs than in

conceptualizing the problem. This is why the following subroutines have been

provided. The subroutines have been tested and used through the course of the

thesis. No extra effort has been made to optimize the computer coding, rather,

the simplest possible programming is used. The following fortran77 subroutines

are appended:

1.

RHOL - Subroutine to calculate the indicator correlation in the three
primary directions of a 3-d indicatpr grid.

SFP - Subroutine to compute the 2-d array of shortest flow paths given a 3-
d array of indicators. Some summaries of the shortest flow paths are also

returned.

RAND - Subroutine to compute random numbers uniformly distributed

between 0 and 1.

OMEGA - Subroutine to determine the averaging power from the effective
permeability, the sandstone permeability, the shale permeability, and the

proportion of shale.

GAUSCDF - This function computes the value of the cdf for a gaussian
probability distribution.
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subroutine rhol (in, name, pmssh, pmssv, pmshh, pmshv, 1summ)

CALCULATE THE SUMMARY STATISTICS OF AN INDICATOR GRID

AhhkhkkhkhkhhkhAdkAhhhkhhkhhbhkhhhkhkhkhkhhkhhkhhkhhhohhhkokhkodkidhkdkhkohkokkk

The summary characteristics of a 3-d indicator grid are calculated.
In particular the indicator correlation for all lags in the
three principal directions are computed.

NOTES:
1. The correlation for the first 10 lags are output in this
version of the subroutine. This can be changed easily in the
code if more or less are desired.

INPUT:
1. The folowing arguments are passed in blank common:

psh = The proportion of shale (1's).

nx,ny,nz = The size of the grid in thex,y, and z directions.
n = nx*ny*nz = total number of units.

ptar = The target proportion of shale (not used).
nxed,y,z = The semiaxis of the ellipsoids generated.

sed = The random number seed that was used to generate

the grid.

2. in(nx,ny,nz) = The indicator grid (1's or 0's).
3. name = the name associated with the run.

4. pmssv = The vertical sandstone permeability.

S. pmssh = The horizontal sandstone permeability.
6. pmshv = The vertical shale permeability.

7. pmshh = The horizontal shale permeability.

8. lsumm = 1 if final summary requested, =0 if not.
OUTPUT:

1. Summary information is written into a file called '"name.summl"
This information if for the single network considered.

2, The same information is written to an intermediate summary
file where summaries for various runs can be saved.
This file should be opened (unit 15) prior to calling the
subroutine. The format can be found at the end of this program.

AUTHOR: Clayton Deutsch DATE: January 1987

dimension in (100, 25, 25), rhox (50) , rhoy (50) , rhoz (50) , num (40)
character name*4,blank*4,appl*6, filel*10

common psh,nx,ny,nz,n,ptar,nxed, nyed, nzed, sed

data blank/' ‘/.appl/' .summl"'/

The file where the readable summary is written:
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filel=name//appl
open (10, file=filel)
c
c Compute the indicator correlation in the X - DIRECTION
c
nlagx=nx-1
do 10 lag=1l,nlagx
acov=0.0
npairs=0
do 11 j=1,ny
do 12 k=1,nz
do 13 1i=1,nx
index=i+lag
if(index.gt.nx) go to 13
acov=acov+in (i, j, k) *in (index, j, k)

npairs=npairs+1l
13 continue
12 continue
11 continue
acov=acov/npairs

rhox (lag) = (acov- (psh*psh) ) / (psh* (1.0-psh) )
10 continue

range=float (2*nxed+1)

call wtrho (rhox, range, nlagx, wtrx, ewrx)
c
c Compute the indicator correlation in the Y - DIRECTION
c

nlagy=ny-1

do 30 lag=1,nlagy

acov=0.0

npairs=0

do 31 i=1,nx

do 32 k=1,nz

do 33 j=1,ny

index=j+lag

if(index.gt.ny) go to 33

acov=acov+in(i, j, k) *in (i, index, k)

npairs=npairs+l
33 continue
32 continue
31 continue
acov=acov/npairs

rhoy (lag) = (acov- (psh*psh) ) / (psh* (1.0-psh) )
30 continue
range=float (2*nyed+1)
call wtrho (rhoy, range, nlagy, wtry, ewry)
c
c Compute the indicator correlation in the Z - DIRECTION
c
nlagz=nz-1
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do 50 lag=l,nlagz
acov=0.0
npairs=0
do 51 j=1,ny
do 52 i=1,nx
do 53 k=1,nz
index=k+lag
if(index.gt.nz) go to 53
acov=acov+in(i, j, k) *in(4i, j, index)
npairs=npairs+1l
continue
continue
continue
acov=acov/npairs .
rhoz(lag)=(acov-(psh*psh))/(psh*(1.0-psh))
continue
range=float (2*nzed+1)
call wtrho (rhoz, range,nlagz,wtrz, ewrz)

write(10,100)name
format (25x, 'RUN # ', alo0)
write (10, *)blank
write (10, 99)nx,ny,nz

format ('Grid size: nx= ',12,' ny= ',12,' nz= ',6i2)

write(10,101)pmssh, pmssv

format ('Permeability of sandstone horz=',f6.1," vert=', £6.1)

write (10, 102)pmshh, pmshv

format ('Permeability of shale horz=',£6.2,' vert=', £6.2)

write (10,98) sed

format ('Random Number Seed =', £12.1)

write (10, *)blank

write(10,103)psh,ptar

format ('Proportion of shale = ', f6.4,' Target =
write (10, *)blank

write (10,104)

format ('Ellipsoidal Shales:')
write (10, 105)nxed

write (10,106)nyed
write(10,107)nzed
format (2x, 'range in x direction =
format (2x, 'range in y direction = ',12)
format (2x, 'range in z direction =
write (10, *)blank

write (10,108)

format ('Indicator Correlation:')
write (10, *)blank

rhol=1.0

do 5 i=1,30

num (1) =1-1

', £6.4)
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continue

X - DIRECTION

0On0awm

write (10, *)blank
write (10,109)

109 format (2x, 'X - Direction:')
write (10,110)ewrx
write(10,111)wtrx
write(10,112)rhox (1)
write (10, *)blank

110 format (4x, 'Equal Weighted = ', £6.4)
111 format (4x, ' Weighted = ', £6.4)
112 format (4x, ' First lag = ',6£6.4)
c
c Y - DIRECTION
c
write (10,118)
118 format (2x, 'Y - Direction:')
write (10,110)ewry
write(10,111)wtry
write(10,112)rhoy (1)
write (10, *)blank
c
c Z - DIRECTION
c
write (10,121)
121 format (2x, 'Z - Direction:')
write(10,110)ewrz
write(10,111)wtrz
write(10,112)rhoz (1)
write (10, *)blank
C ————————————————————————————————————————————————————————————
c WRITE OUT TO INTERMEDIATE FILE - SUMMARY
c ————————————————————————————————————————————————————————————

write (15, 999) name, sed, nxed, nyed, nzed, psh
999 format (a4, 2x, £9.0,2x,13, 2x,13, 2x,13, 2x, £5. 3)
write (15,998) (rhox(i),i=1,5)
998 format (1x, 5 (1x, £6.4))
write(15,998) (rhox (i), 1=6,10)
write (15,998) (rhoy (i), 1=1,5)
write (15,998) (rhoy (i), 1=6,10)
write (15,998) (rhoz (i), 1i=1,5)
write (15,998) (rhoz (i),1i=6,10)

noaon

retum
end
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WIRHO
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subroutine wtrho (rh, range,nd, wtr, ewr)

SUBROUTINE TO CALCULATE THE WEIGHTED INDICATOR CORRELATION
GIVEN THE INDICATOR CORRELATION FOR EACH LAG AND THE RANGE.
INPUT:

1. rh(i) = The indicator correlation function.

2. range = The range to be used in the weighting.

3. nd = The size of the grid to use for calculation.
OUTPUT:

l. wtr = The weighted indicator correlation.

2. ewr = The equal weighted correlation.

dimension rh(50)
nrang=ifix (range+0.5)
swtrx=0.0

if (nrang.le.1l) then
wtr=rh (1)

do 10 k=1,nd

10 swtrx=swtrx+rh (k)
ewr=swtrx/float (nd)
return

endif

alamt=0.0

blamt=0.0

blam=1.0

do 20 i=1,nd
if(i.gt.nrang) then
alam=0.0

else

alam=float ((-1/nrang) *i+1)
endif
swtrx=swtrx+alam*rh (i)
alamt=alamt+alam
blamt=blamt+blam*rh (i)
20 continue
ewr=blamt/float (nd)
if(alamt.le.0.0) alamt=0.01
wtr=swtrx/alamt

return
end
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c —————————————————————————————————————————————————————————————————————————
c
c CALCULATE THE SHORTEST PATH FOR A 3-D NETWORK
c KAk A A AR AR AR AR R AR AR AR R AR R AR AR Ak k ok h ke k ok &k ok &
c
c NOTES:
€ 1. x is the flow direction
c 2. z is the vertical direction
c
c INPUT
c 1. nx,ny,nz = size of the grid in the %X,Y, and z directions
¢ 2. in(nx,ny,nz) = indicator network (l=impermeable, O=permeable)
c 3. niter = number of iterations for each node
c
c OUTPUT: -
c 1. nsfp(ny.nz) = array of shortest flow paths
c 2. nsfpmn = number of minimum "shortest flow paths"
c 3. nmninf = number of non-infinity flow paths
c 4. sfpavg = average shortest flow path (non-infinity)
c
c AUTHOR: Clayton Deutsch DATE: January 1987
o T U
dimension in (100, 25, 25) ,nsfp (25, 25) , vector (1) ,nsel (4)
common /unusual/itab (55),nl,n2,nseed
integer stfg
c
c
c
nrand=1
call rand(sed,nrand, vector)
seed=0.0
c
c
c
ns fpmn=0
inf=9999
do 1 jblk=1l,ny
do 2 kblk=1l,nz
nsfp (jblk, kblk) =inf
do 3 iter=l,niter
stfp=1
icur=1
jeur=jblk
kcur=kblk
c
c GET A SANDSTONE STARTING PLACE
c

if(in(icur, jcur, kcur) .eq.1) then
ihope=0
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ihope=ihope+1l

if (ihope.ge.5) then
stfp=inf

go to 4

endif

ktl=kcur+ihope

kt2=kcur-ihope

iktl=1

ikta=1

if(ktl.gt.nz) then

ikt1i=0

go to S5

endif

if(in(icur, jcur,ktl) .eq.1) iktl=0
if(kt2.1e.0) then

ikt2=0

go to 96

endif

if(in(icur, jcur,kt2) .eq.1) ikt2=0
continue

kup=-1
if(iktl.eq.l.and.ikt2.eq.1) then
call rand(seed,nrand, vector)
ipick=ifix(2.0*vector (1))
if(ipick.eq.0) kup=ktl
if(ipick.eq.1l) kup=kt2

else

if(iktl.eq.1l) kup=ktl
if(ikt2.eq.1) kup=kt2

endif

if(kup.eqg.-1) go to 99
stfp=stfp+ihope

kcur=]

else
continue
endif

MOVE FORWARD TO THE END

Jjpast=jcur

kpast=kcur

it=icur+l

if(in(it, jcur,kcur) .eq.0) then
icur=it

stfp=stfp+1l

if(it.eq.nx) go to 4

go to 98

endif

MUST MOVE AROUND SHALE
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jti=jcur-1
jt2=jcur+l

ktl=kcur-1

kt2=kcur+l

ijti=1

ijt2=1

iktl=1

ikt2=1
if(jtl.le.0.or.jtl.eq.jpast) then
ijti1=0

go to 93

endif

if(in(icur, jtl1,kcur) .eq.1) 1jt1=0
if(jt2.gt.ny.or.jt2.eq.jpast) then
ijt2=0

go to 92

endif

if(in(icur, jt2,kcur) .eq.1) ijt2=0
if(ktl.le.0.or.ktl.eq.kpast) then
ikt1=0

go to 91

endif

if(in(icur, jcur,ktl) .eq.1) iktl=0
if(kt2.gt.nz.or.kt2.eq.kpast) then
ikt2=0

go to 94

endif

if(in(icur, jcur, kt2) .eq.1) ikt2=0
continue

11i=0
if(ikt2.eq.1) then
iii=1ii+1

nsel (iii)=1

endif
if(ijt2.eq.1) then
ifi=iii+l

nsel (1ii)=2

endif
if(iktl.eq.1l) then
iii=iii+l

nsel (1ii)=3

endif
if(ijtl.eq.1) then
iii=iii+1

nsel (1ii)=4

endif

if(iii.eq.0) then
stfp=inf
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go to 4
endif

call rand(seed,nrand, vector)
indexl=ifix (vector (1) *float (iii))+1
index=nsel (index1)
if(index.eq.1l) then
kpast=kcur

kcur=kt2

stfp=stfp+l

endif

if(index.eq.2) then
Jpast=jcur

Jjour=3jt2

stfp=stfp+1l

endif

if(index.eq.3) then
kpast=kcur

kcur=ktl

stfp=stfp+1

endif

if (index.eq.4) then
jpast=jcur

Jjeour=jtl

stfp=stfp+l

endif

go to 98

continue
if(stfp.lt.nsfp(jblk, kblk)) nsfp (jblk, kblk) =stfp
continue
continue

continue

COMPUTE FINAL STATISTICS

000D W b

nninf=0
sfpavg=0.0
ns fpmn=0
do 100 i=1,ny
do 101 j=1,nz
itest=nsfp (i, j)
if (itest.eq.nx) nsfpmn=nsfpmn+l
if(itest.1t.9999) then
nninf=rninf+l
sfpavg=sfpavg+float (itest)
endif
101 continue
100 continue
sfpavg=sfpavg/float (nninf)

FINISHED THE SUBROUTINE

nnaon

return
end
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subroutine rand (seed,n, vector)
Marsaglias handy dandy random number generator.

This random number generator generates random numbers in ]0,1[
Note that if the seed value is zero on the first call, a default
value of 1369 will be used in a linear congruential generator to
generate 55 odd integers for the array 'itab()'. These values are
preserved by a common statement, so that they may be used in sub-
sequent calls by setting the seed to zero.If the value of 'seed'
is greater than zero in a call to the subroutine, then the array
'itab' will be initialized and a new seed value will be returned
by the subroutine. Best results are obtained by making the initial
call with a seed of your choice and then setting the seed to '0'
for all subsequent calls.

onoooa0000000000
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dimension vector (n)
common /unusual/itab (55),nl,n2,nseed
integer rnil,seed

test to see if 55 odd integers must be generated.

000

if((seed.le.0) .and. (nseed.ge.1l)) go to 11
nseed = seed
if(seed.le.0) nseed = 7931

generate 55 odd integers in array itab().

000

do 10 1i=1,55
rnl=mod (nseed*9069, 32768)
if (mod(rmil, 2) .eq.0) rnl = rnl-1
itab(i) = 1
nseed = rnl
10 continue
c
c generate 'n" random components for the vector "VECTOR"
c
nl =20
nz2 = 24
11 do 30 i=1.,n
itab (55-n1) = mod (itab (55-n2) *itab (55-nl1), 32768)
nseed = itab (55-n1) /2
vector (1) = float (nseed)/float (16384)
nl = mod (nl+l, 55)
n2 = mod(n2+1, 55)
30 continue
if(seed.gt.0) seed=-nseed
return
end
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subroutine omega (pke, pksh, pkss, psh, w)

CALCULATE THE POWER OF AVERAGING

KARAKRAAARAR AR AR A A AR AR R AR A A khkhkkk

INPUT:
1. pke
2. pksh
3. pkss
4. psh

effective permeability.
shale permeability.
sandstone permeability.
proportion of shale.

Wwiunu

OUTPUT:
1. w

the averaging power.

AUTHOR: Clayton Deutsch DATE: January 1987

wn=-0.001

wp=0.001

dop=del (pke, pksh, pkss, psh, wp)
dnp=del (pke, pksh, pkss, psh, wn)
w=0.0

if(dop.gt.0.0) w=-1.0

w=w+0.005

dow=del (pke, pksh, pkss, psh, w)
do 10 i=1,100

w=w+0.01

doa=del (pke, pksh, pkss, psh, w)
test=doa*dow
if(test.1le.0.0) go to 20
dow=doa

10 continue

OO

0 w=w-0.01

do 30 i=1,100
w=w+0.001
doa=del (pke, pksh, pkss,psh, w)
test=doa*dow

if(test.le.0.0) go to 40
dow=doa

30 continue

0 w=w-0.0005
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returm
end

function delta

000

real function del (pke,pksh, pkss,psh,w)

if(w.gt.-0.0009.and.w.1t.0.0009) go to 291
del=psh* (pksh**w) + (1.0-psh) * (pkss**w) -pke* *w
go to 292

291 del=0.0

292 continue
return
end
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real function gauscdf (m,s, x)

This function computes the value of the cdf for a gaussian
probability distribution of mean m , standard deviation s

Reference : Abramovitz and Stegun , p.932

data cl,c2,c3,c4/0.196854,0.115194,0.000344,0.019527 /

real m

if(s.eq.0.0) stop 'Error in gauscdf '

yl=(x-m) /s

y=abs (y1)

gaus=1.0+y* (cl+y* (c2+y* (c3+y*c4)))

gl=1.0/gaus

g4=gl*gl*gl*gl
gauscdf=1.0~0.5*g4
if(y1.1t.0.0) gauscdf=1.0-gauscdf

return
end





